【题目】某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上
件产品作为样本算出他们的重量(单位:克)重量的分组区间为
,
,……
,由此得到样本的频率分布直方图,如图所示.
![]()
(1)根据频率分布直方图,求重量超过
克的产品数量.
(2)在上述抽取的
件产品中任取
件,设
为重量超过
克的产品数量,求
的分布列.
(3)从流水线上任取
件产品,求恰有
件产品合格的重量超过
克的概率.
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn,且满足Sn+n=2an(n∈N*).
(1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;
(2)若bn=(2n+1)an+2n+1,数列{bn}的前n项和为Tn.求满足不等式
>2010的n的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
是底面边长为1的正三棱锥,
分别为棱长
上的点,截面
底面
,且棱台
与棱锥
的棱长和相等.(棱长和是指多面体中所有棱的长度之和)
![]()
(1)证明:
为正四面体;
(2)若
,求二面角
的大小;(结果用反三角函数值表示)
(3)设棱台
的体积为
,是否存在体积为
且各棱长均相等的直平行六面体,使得它与棱台
有相同的棱长和?若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.
(注:用平行于底的截面截棱锥,该截面与底面之间的部分称为棱台,本题中棱台的体积等于棱锥
的体积减去棱锥
的体积.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
和点
,动圆
经过点
且与圆
相切,圆心
的轨迹为曲线![]()
(1)求曲线
的方程;
(2)点
是曲线
与
轴正半轴的交点,点
在曲线
上,若直线
的斜率
满足
求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在矩形ABCD和矩形ABEF中,
,
,矩形ABEF可沿AB任意翻折.
![]()
(1)求证:当点F,A,D不共线时,线段MN总平行于平面ADF.
(2)“不管怎样翻折矩形ABEF,线段MN总与线段FD平行”这个结论正确吗?如果正确,请证明;如果不正确,请说明能否改变个别已知条件使上述结论成立,并给出理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(13分)设{an}是公比为正数的等比数列a1=2,a3=a2+4.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,设实数
、
、
、
、
、
满足
(i)
、
、
且不全为0;
(ii)
、
、
;
(iii)若
,则
.
若所有形如
和
的数均不为2014的倍数,则称集合
为“好集”.求好集
所含元素个数的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com