【题目】如图,四边形ABEF和四边形ABCD均是直角梯形,∠FAB=∠DAB=90°,二面角FABD是直二面角,BE∥AF,BC∥AD,AF=AB=BC=2,AD=1.
(1)证明:在平面BCE上,一定存在过点C的直线l与直线DF平行;
(2)求二面角FCDA的余弦值.
![]()
【答案】(1)见解析(2)![]()
【解析】试题分析:(1)推导出平面BCE∥平面ADF.设平面DFC∩平面BCE=l,则l过点C.由平面BCE∥平面ADF,平面DFC∩平面BCE=l,得到DF∥l,由此能证明在平面BCE上一定存在过点C的直线l,使得DF∥l.(2)以A为原点,AD,AB,AF分别为x轴,y轴,z轴建立空间直角坐标系,利用向量法能求出二面角FCDA的余弦值.
试题解析:
(1)证明:由已知得,BE∥AF,BE平面AFD,AF平面AFD,
∴BE∥平面AFD.
同理可得,BC∥平面AFD.
又BE∩BC=B,∴平面BCE∥平面AFD.
设平面DFC∩平面BCE=l,则l过点C.
∵平面BCE∥平面ADF,平面DFC∩平面BCE=l,平面DFC∩平面AFD=DF,
∴DF∥l,即在平面BCE上一定存在过点C的直线l,使得DF∥l.
(2)∵平面ABEF⊥平面ABCD,平面ABCD∩平面ABEF=AB,FA平面ABEF,
又∠FAB=90°,∴AF⊥AB,∴AF⊥平面ABCD.
∵AD平面ABCD,∴AF⊥AD.
![]()
∵∠DAB=90°,∴AD⊥AB.
以A为坐标原点,AD,AB,AF所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,由已知得,D(1,0,0),C(2,2,0),F(0,0,2),∴
=(-1,0,2),
=(1,2,0).
设平面DFC的法向量为n=(x,y,z),
则
即![]()
令z=1,则n=(2,-1,1),
不妨取平面ACD的一个法向量为m=(0,0,1),
∴cos〈m,n〉=
=
=
,
由于二面角FCDA为锐角,
因此二面角FCDA的余弦值为
.
科目:高中数学 来源: 题型:
【题目】已知离心率为
的椭圆
焦点在
轴上,且椭圆
个顶点构成的四边形面积为
,过点
的直线
与椭圆
相交于不同的两点
、
.
(1)求椭圆
的方程;
(2)设
为椭圆上一点,且
(
为坐标原点).求当
时,实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了展示中华汉字的无穷魅力,传递传统文化,提高学习热情,某校开展《中国汉字听写大会》的活动.为响应学校号召,2(9)班组建了兴趣班,根据甲、乙两人近期8次成绩画出茎叶图,如图所示(把频率当作概率).
![]()
(1)求甲、乙两人成绩的平均数和中位数;
(2)现要从甲、乙两人中选派一人参加比赛,从统计学的角度,你认为派哪位学生参加比较合适?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,圆
:
.
![]()
(Ⅰ)若圆C与x轴相切,求圆C的方程;
(Ⅱ)已知
,圆
与x轴相交于两点
(点
在点
的左侧).过点
任作一条直线与圆
:
相交于两点A,B.问:是否存在实数a,使得
=
?若存在,求出实数a的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,岛
、
相距
海里.上午9点整有一客轮在岛
的北偏西
且距岛
海里的
处,沿直线方向匀速开往岛
,在岛
停留
分钟后前往
市.上午
测得客轮位于岛
的北偏西
且距岛
海里的
处,此时小张从岛
乘坐速度为
海里/小时的小艇沿直线方向前往
岛换乘客轮去
市.
![]()
(Ⅰ)若
,问小张能否乘上这班客轮?
(Ⅱ)现测得
,
.已知速度为
海里/小时(
)的小艇每小时的总费用为(
)元,若小张由岛
直接乘小艇去
市,则至少需要多少费用?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,点E,F,G分别在棱SA,SB,SC上,且平面EFG∥平面ABC,点E为SA的中点.求证:
(Ⅰ)AF⊥平面SBC;
(Ⅱ)SA⊥BC.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据统计,某5家鲜花店今年4月的销售额和利润额资料如下表:
鲜花店名称 | A | B | C | D | E |
销售额x(千元) | 3 | 5 | 6 | 7 | 9 |
利润额y(千元) | 2 | 3 | 3 | 4 | 5 |
(1)用最小二乘法计算利润额y关于销售额x的回归直线方程
=
x+
;
(2)如果某家鲜花店的销售额为8千元时,利用(1)的结论估计这家鲜花店的利润额是多少.
参考公式:回归方程
中斜率和截距的最小二乘法估计值公式分别为![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com