【题目】已知圆
:
,直线
过定点
.
(1)若
与圆
相切,求
的方程;
(2)若
与圆
相交于
,
两点,求三角形
面积的最大值,并求此时
的直线方程.
【答案】(1)
或
;(2)
或![]()
【解析】
(1)根据已知条件设出直线
方程,注意
的斜率是否存在,圆心到直线
的距离等于半径,利用点到直线距离公式,即可确定出直线
的方程;
(2)先设直线
方程,求出圆心到直线
的距离,再根据垂径定理,求出
弦长,得到
面积的表达式,再求出此表达式的最大值.
(1)将圆的一般方程化为标准方程,得
,
∴圆心
,半径
.
①若直线
的斜率不存在,则直线
,符合题意.
②若直线
斜率存在,设直线
:
,即
.
∵
与圆
相切.∴圆心
到已知直线
的距离等于半径2,
即
,解得
.
∴综上,所求直线方程为
或
.
(2)直线与圆相交,斜率必定存在,
设直线方程为
.
则圆心到直线
的距离
.
又∵
面积![]()
,
∴当
时,
.
由
,解得
或
.
∴直线方程为
或
.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知圆
经过
,
两点,且圆心在直线
上.
(1)求圆
的标准方程;
(2)过圆
内一点
作两条相互垂直的弦
,当
时,求四边形
的面积.
(3)设直线
与圆
相交于
两点,
,且
的面积为
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正方体
的棱长为
,点E,F,G分别为棱AB,
,
的中点,下列结论中,正确结论的序号是___________.
![]()
①过E,F,G三点作正方体的截面,所得截面为正六边形;
②
平面EFG;
③
平面
;
④异面直线EF与
所成角的正切值为
;
⑤四面体
的体积等于
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正四棱锥S-ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:①EP⊥AC;②EP∥BD;③EP∥平面SBD;④EP⊥平面SAC,其中恒成立的为( )
![]()
A.①③B.③④C.①②D.②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为庆祝国庆节,某中学团委组织了“歌颂祖国,爱我中华”知识竞赛,从参加考试的学生中抽出60名,将其成绩(成绩均为整数)分成[40,50),[50,60),…,[90,100)六组,并画出如图所示的部分频率分布直方图,观察图形,回答下列问题:
![]()
(1)求第四组的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知cos2B+cosB=1-cosAcosC.
(1)求证:a,b,c成等比数列;
(2)若b=2,求△ABC的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com