【题目】在平面直角坐标系中,曲线
的参数方程为
(
,
为参数),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,曲线
经过点
,曲线
的直角坐标方程为
.
(1)求曲线
的普通方程,曲线
的极坐标方程;
(2)若
,
是曲线
上两点,当
时,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】已知点
,点
,点
,动圆
与
轴相切于点
,过点
的直线
与圆
相切于点
,过点
的直线
与圆
相切于点
(
均不同于点
),且
与
交于点
,设点
的轨迹为曲线
.
(1)证明:
为定值,并求
的方程;
(2)设直线
与
的另一个交点为
,直线
与
交于
两点,当
三点共线时,求四边形
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业在“精准扶贫”行动中,决定帮助一贫困山区将水果运出销售.现有8辆甲型车和4辆乙型车,甲型车每次最多能运6吨且每天能运4次,乙型车每次最多能运10吨且每天能运3次,甲型车每天费用320元,乙型车每天费用504元.若需要一天内把180吨水果运输到火车站,则通过合理调配车辆运送这批水果的费用最少为______元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数
满足:对于任意正数
,都有
,且
,则称函数
为“L函数”.
(1)试判断函数
与
是否是“L函数”;
(2)若函数
为“L函数”,求实数a的取值范围;
(3)若函数
为“L函数”,且
,求证:对任意
,都有
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小明与另外2名同学进行“手心手背”游戏,规则是:3人同时随机等可能选择手心或手背中的一种手势,规定相同手势人数多者每人得1分,其余每人得0分.现3人共进行了4次游戏,记小明4次游戏得分之和为
,则
的期望为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三个校区分别位于扇形OAB的三个顶点上,点Q是弧AB的中点,现欲在线段OQ上找一处开挖工作坑P(不与点O,Q重合),为小区铺设三条地下电缆管线PO,PA,PB,已知OA=2千米,∠AOB=
,记∠APQ=θrad,地下电缆管线的总长度为y千米.
(1)将y表示成θ的函数,并写出θ的范围;
(2)请确定工作坑P的位置,使地下电缆管线的总长度最小.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x),x∈R是奇函数,其部分图象如图所示,则在(﹣1,0)上与函数f(x)的单调性相同的是( )
![]()
A.
B.y=log2|x|
C.
D.y=cos(2x)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若
在
时,有极值,求
的值;
(2)在直线
上是否存在点
,使得过点
至少有两条直线与曲线
相切?若存在,求出
点坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com