【题目】设点
、
是平面上左、右两个不同的定点,
,动点
满足:
.
(1)求证:动点
的轨迹
为椭圆;
(2)抛物线
满足:①顶点在椭圆
的中心;②焦点与椭圆
的右焦点重合.
设抛物线
与椭圆
的一个交点为
.问:是否存在正实数
,使得
的边长为连续自然数.若存在,求出
的值;若不存在,说明理由.
【答案】(1)见解析;(2)存在实数
,使得
的边长为连续自然数。
【解析】试题分析: (1)根据题意,分两种情况讨论:①点P、F1、F2构成三角形,②点P、F1、F2不构成三角形,每种情况下分析可得|PF1|+|PF2|=4m,由椭圆的定义分析可得答案;
(2)根据题意,由(1)可得,动点P的轨迹方程,分析可得抛物线的焦点坐标,假设存在满足条件的实数m,结合椭圆与抛物线的性质分析可得m的值,即可得答案.
试题解析
(1)若点
构成三角形则
,
![]()
整理得
,即
.
若点
不构成三角形,也满足
.
所以动点
的轨迹为椭圆
(2)动点
的轨迹方程为
抛物线的焦点坐标为
与椭圆的右焦点
重合.
假设存在实数
,使得
的边长为连续自然数.
因为
,
不妨设|
,
由抛物线的定义可知
,解得
,
设点
的坐标为
,
整理得
,解得
或
所以存在实数
,使得
的边长为连续自然数
科目:高中数学 来源: 题型:
【题目】已知
,
为实数,函数
,函数
.
(1) 当
时,令
,若
恒成立,求实数
的取值范围;
(2) 当
时,令
,是否存在实数
,使得对于函数
定义域中的任意实数
,均存在实数
,有
成立?若存在,求出实数
的取值集合;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
满足
,
,其中
.
(1)设
,求证:数列
是等差数列,并求出
的通项公式;
(2)设
,数列
的前
项和为
,是否存在正整数
,使得
对于
恒成立,若存在,求出
的最小值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
,
.
(Ⅰ)若
,求
的极小值;
(Ⅱ)在(Ⅰ)的条件下,是否存在实常数
和
,使得
和
?若存在,求出
和
的值.若不存在,说明理由;
(Ⅲ)设
有两个零点
,且
成等差数列,试探究
值的符号.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】要分析学生初中升学考试的数学成绩对高一年级数学学习有什么影响,在高一年级学生中随机抽取10名学生,分析他们入学的数学成绩(x)和高一年级期末数学考试成绩(y)(如下表):
(1)画出散点图;
(2)判断入学成绩(x)与高一期末考试成绩(y)是否有线性相关关系;
(3)如果x与y具有线性相关关系,求出回归直线方程;
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
x | 63 | 67 | 45 | 88 | 81 | 71 | 52 | 99 | 58 | 76 |
y | 65 | 78 | 52 | 85 | 92 | 89 | 73 | 98 | 56 | 75 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某花店每天以每枝
元的价格从农场购进若干枝玫瑰花,然后以每枝
元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.
(1)若花店一天购进
枝玫瑰花,求当天的利润
(单位:元)关于当天需求量
(单位:枝,
)的函数解析式.
(2)花店记录了
天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量 |
|
|
|
|
|
|
|
频数 |
|
|
|
|
|
|
|
假设花店在这
天内每天购进
枝玫瑰花,求这
天的日利润(单位:元)的平均数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还
升,
升,
升,1斗为10升,则下列判断正确的是( )
A.
,
,
依次成公比为2的等比数列,且![]()
B.
,
,
依次成公比为2的等比数列,且![]()
C.
,
,
依次成公比为
的等比数列,且![]()
D.
,
,
依次成公比为
的等比数列,且![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com