【题目】设函数f(x)=
(Ⅰ)当
时,求函数f(x)的值域;
(Ⅱ)若函数f(x)是(﹣∞,+∞)上的减函数,求实数a的取值范围.
【答案】解:(Ⅰ)a=
时,f(x)=
, 当x<1时,f(x)=x2﹣3x是减函数,所以f(x)>f(1)=﹣2,即x<1时,f(x)的值域是(﹣2,+∞).
当x≥1时,f(x)=
是减函数,所以f(x)≤f(1)=0,即x≥1时,f(x)的值域是(﹣∞,0].
于是函数f(x)的值域是(﹣∞,0]∪(﹣2,+∞)=R.
(Ⅱ)若函数f(x)是(﹣∞,+∞)上的减函数,则下列①②③三个条件同时成立:
①当x<1,f(x)=x2﹣(4a+1)x﹣8a+4是减函数,于是
≥1,则a≥
.
②x≥1时,f(x)=
是减函数,则0<a<1.
③12﹣(4a+1)1﹣8a+4≥0,则a≤
.
于是实数a的取值范围是[
,
]
【解析】(Ⅰ)a=
时,f(x)=
,当x<1时,f(x)=x2﹣3x是减函数,可求此时函数f(x)的值域;同理可求得当x≥1时,减函数f(x)=
的值域;(Ⅱ)函数f(x)是(﹣∞,+∞)上的减函数,三个条件需同时成立,①
≥1,②0<a<1,③12﹣(4a+1)1﹣8a+4≥0,从而可解得实数a的取值范围.
【考点精析】认真审题,首先需要了解函数单调性的性质(函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集),还要掌握函数的值(函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法)的相关知识才是答题的关键.
科目:高中数学 来源: 题型:
【题目】设
是各项均不相等的数列,
为它的前
项和,满足
.
(1)若
,且
成等差数列,求
的值;
(2)若
的各项均不相等,问当且仅当
为何值时,
成等差数列?试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数: 907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,这三天中恰有两天下雨的概率近似为( )
A.0.35
B.0.25
C.0.20
D.0.15
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AB=4,EC∥FD,FD⊥底面ABCD,M是AB的中点.![]()
(1)求证:平面CFM⊥平面BDF;
(2)若点N为线段CE的中点,EC=2,FD=3,求证:MN∥平面BEF.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
,其中
是自然对数的底数.
(Ⅰ)判断函数
在
内零点的个数,并说明理由;
(Ⅱ)
,
,使得不等式
成立,试求实数
的取值范围;
(Ⅲ)若
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px过点P(1,1).过点(0,
)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.
(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;
(Ⅱ)求证:A为线段BM的中点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2 , 若对任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A、B、C的对边分别为a,b,c,且a>c,已知
=2,cosB=
,b=3,求:
(Ⅰ)a和c的值;
(Ⅱ)cos(B﹣C)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对应的边分别为a,b,c,且(2a﹣c)cosB=bcosC.
(Ⅰ)求角B的大小;
(Ⅱ)若cosA=
,a=2,求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com