精英家教网 > 高中数学 > 题目详情

【题目】设f(x)是定义在实数集R上的函数,满足条件y=f(x+1)是偶函数,且当x≥1时,f(x)= ,则 的大小关系是( )
A.
B.
C.
D.

【答案】A
【解析】函数y=f(x+1)是偶函数,所以f(-x+1)=f(x+1),即函数关于x=1对称.
所以f =f ,f =f
当x≥1时,f(x)= x-1单调递减,
所以由 ,可得f >f >f
即f >f >f
所以答案是:A
【考点精析】根据题目的已知条件,利用函数奇偶性的性质的相关知识可以得到问题的答案,需要掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设甲、乙两人每次射击命中目标的概率分别为 ,且各次射击相互独立,若按甲、乙、甲、乙…的次序轮流射击,直到有一人击中目标就停止射击,则停止射击时,甲射击了两次的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明:MN∥平面PAB;
(2)求直线AN与平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕, 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,

(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数 (同一组中的数据用该组区间的中点值作代表);
(2)①由直方图可以认为,速冻水饺的该项质量指标值 服从正态分布 ,利用该正态分布,求 落在 内的概率;
②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于 内的包数为 ,求 的分布列和数学期望.
附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为
②若 ,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 点(n,Sn+3)(n∈N*)在函数y=3×2x的图象上,等比数列{bn}满足bn+bn+1=an(n∈N*).其前n项和为Tn , 则下列结论正确的是(
A.Sn=2Tn
B.Tn=2bn+1
C.Tn>an
D.Tn<bn+1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex-ex(x∈R,且e为自然对数的底数).
(1)判断函数f(x)的单调性与奇偶性;
(2)是否存在实数t , 使不等式f(xt)+f(x2t2)≥0对一切x∈R都成立?若存在,求出t;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知坐标平面上动点 与两个定点 ,且 .
(1)求点 的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中轨迹为 ,过点 的直线 所截得的线段长度为8,求直线 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,设
(Ⅰ)若f(α)=2,求 的值;
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a﹣b)cosC=ccosB,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某化工厂为预测产品的回收率 ,需要研究它和原料有效成分含量 之间的相关关系,现收集了4组对照数据。

3

4

5

6

2.5

3

4

4.5

(Ⅰ)请根据相关系数 的大小判断回收率 之间是否存在高度线性相关关系;
(Ⅱ)请根据上表提供的数据,用最小二乘法求出 关于 的线性回归方程 ,并预测当 时回收率 的值.
参考数据:

1

0

其他

相关关系

完全相关

不相关

高度相关

低度相关

中度相关

查看答案和解析>>

同步练习册答案