【题目】如图,在四棱锥
中,
为正方形,且平面
平面
,点
为棱
的中点.
![]()
(1)在棱
上是否存在一点
,使得
平面
?并说明理由;
(2)若
,求直线
与平面
所成角的正弦值.
【答案】(1)存在,理由见解析;(2)
.
【解析】
(1)当
为
中点时,分别取
,
中点
,
,连接
,
,
,
,由平面几何知识证明四边形
是平行四边形,最后由线面平行的判定定理证明即可;
(2)取
中点
,连接
,
,以
为原点,
,
,
分别为
,
,
轴建立空间直角坐标系,利用向量法求解即可.
(1)当
为
中点时,
平面
.理由如下:
如图,分别取
,
中点
,
,连接
,
,
,![]()
又∵
是
的中点,∴
,![]()
又∵
为正方形,则
,![]()
∴
,![]()
又∵
是
中点,∴
,
,则四边形
是平行四边形
∴![]()
又
平面
,
平面
,
∴
平面
.
![]()
(2)如图,取
中点
,连接
,![]()
又
,则![]()
∵平面
平面
,平面
平面
,
平面![]()
∴
平面![]()
∴以
为原点,
,
,
分别为
,
,
轴建立空间直角坐标系
设
,则
,
,
,
,![]()
∴
,
,![]()
设平面
的一个法向量为
,则![]()
令
得
,
,则
,![]()
∴![]()
∴直线
与平面
所成角的正弦值为
.
科目:高中数学 来源: 题型:
【题目】如图,在四边形
中,
,以
为折痕把
折起,使点
到达点
的位置,且
.
![]()
(1)证明:
平面
;
(2)若
为
的中点,二面角
等于60°,求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数,
为直线
的倾斜角),以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)写出曲线
的直角坐标方程,并求
时直线
的普通方程;
(2)若直线
和曲线
交于两点
,点
的直角坐标为
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三位同学在一项集训中的40次测试分数都在[50,100]内,将他们的测试分数分别绘制成频率分布直方图,如图所示,记甲、乙、丙的分数标准差分别为s1,s2,s3,则它们的大小关系为( )
![]()
A.s1
s2
s3B.s1
s3
s2
C.s3
s1
s2D.s3
s2
s1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】天干地支纪年法,源于中国.中国自古便有十天干与十二地支.十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸,十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如说第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”… …依此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”“乙亥”,之后地支回到“子”重新开始,即“丙子”… …依此类推.1911年中国爆发推翻清朝专制帝制、建立共和政体的全国性革命,这一年是辛亥年,史称“辛亥革命”.1949新中国成立,请推算新中国成立的年份为( )
A.己丑年B.己酉年
C.丙寅年D.甲寅年
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛物线
,
为直线
上的动点,过点
作抛物线
的两条切线,切点分别为
,
.
(1)证明:直线
过定点;
(2)若以
为圆心的圆与直线
相切,且切点为线段
的中点,求该圆的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过点
的动直线l与y轴交于点
,过点T且垂直于l的直线
与直线
相交于点M.
(1)求M的轨迹方程;
(2)设M位于第一象限,以AM为直径的圆
与y轴相交于点N,且
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边长得到的正方形是由
个全等的直角三角形再加上中间的一个小正方形组成的,如图(1)),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由
个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设
,若在大正六边形中随机取一点,则此点取自小正六边形的概率为( )
![]()
A.
B.![]()
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com