精英家教网 > 高中数学 > 题目详情
精英家教网如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥面ABCD,且PA=AD,E,F分别是AB,PC的中点.
(1)求证:EF⊥面PCD;
(2)若CD=
2
AD
,求BD与面EFD所成角的正弦值.
分析:(1)利用线面垂直的判断定理证得AG⊥平面PCD,利用平行四边形得到EF∥AG,利用两条平行线中一条垂直一个平面,另一条也垂直平面,得到EF⊥平面PCD.
(2)建立空间直角坐标系,求出点的坐标,由第(1)问可知PC⊥平面AEF,利用向量的数量积求出BD与面EFD所成角的正弦值.
解答:解:(1)取PD中点G,由PA=AD得AG⊥PD,又CD⊥PD,所以AG⊥平面PCD,
因为EG∥AE且相等,
所以EF∥AG,
所以EF⊥平面PCD…(6分)
(2)以A为原点,AB方向为x轴,AD方向为y轴,AP方向为z轴建立空间直角坐标系,
设AD=1,则CD=PD=
2

所以B(
2
,0,0)
C(
2
,1,0)
,D(0,1,0),P(0,0,1),
DB
=(
2
,-1,0)
…(1分)
由第(1)问可知PC⊥平面AEF,
所以
PC
=(
2
,1,-1)
为平面AEF的法向量…(2分)
所以cos<
DB
PC
>=
2-1
3
•2
=
3
6
…(2分)
所以所求角的正弦值
3
6
…(1分)
点评:解决立体几何中的线面的位置关系、度量关系,一般利用的方法是建立直角坐标系,转化为向量间的位置关系和度量关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.

查看答案和解析>>

同步练习册答案