【题目】已知
是自然对数的底数,函数
与
的定义域都是
.
(1)求函数
在点
处的切线方程;
(2)判断函数
零点个数;
(3)用
表示
的最小值,设
,
,若函数
在
上为增函数,求实数
的取值范围.
【答案】(1)
;(2)函数
只有一个零点;(3)
.
【解析】
(1)先求导数
,代入
得
为直线的斜率,利用点斜式可求直线方程;
(2)先求导数,结合导数的符号,判定零点的个数;
(3)
为增函数,转化为
恒成立,然后利用分离参数法求解.
(1)∵
,∴切线的斜率
,
.
∴函数
在点
处的切线方程为
.
(2)∵
,
,∴
,
,
,
∴
存在零点
,且
.∵
,
∴当
时,
;当
时,由
得
.∴
在
上是减函数.
∴若
,
,
,则
.∴函数
只有一个零点
,且
.
(3)解:
,故
,
∵函数
只有一个零点
,∴
,即
.∴
.
∴
在
为增函数
在
,
恒成立.
当
时
,即
在区间
上恒成立.
设
,只需
,
,
在
单调递减,在
单调递增.
的最小值
,
.
当
时,
,由上述得
,则
在
恒成立.
综上述,实数
的取值范围是
.
科目:高中数学 来源: 题型:
【题目】为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了
年下半年该市
名农民工(其中技术工、非技术工各
名)的月工资,得到这
名农民工月工资的中位数为
百元(假设这
名农民工的月工资均在
(百元)内)且月工资收入在
(百元)内的人数为
,并根据调查结果画出如图所示的频率分布直方图:
![]()
(Ⅰ)求
,
的值;
(Ⅱ)已知这
名农民工中月工资高于平均数的技术工有
名,非技术工有
名,则能否在犯错误的概率不超过
的前提下认为是不是技术工与月工资是否高于平均数有关系?
参考公式及数据:
,其中
.
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用长为18 cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)如图,
是圆
的直径,点
是圆
上异于
的点,
垂直于圆
所在的平面,且
.
![]()
(Ⅰ)若
为线段
的中点,求证
平面
;
(Ⅱ)求三棱锥
体积的最大值;
(Ⅲ)若
,点
在线段
上,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某赛季甲、乙两位运动员每场比赛得分的茎叶图如图所示.
![]()
(1)从甲、乙两人的这5次成绩中各随机抽取一个,求甲的成绩比乙的成绩高的概率;
(2)试用统计学中的平均数、方差知识对甲、乙两位运动员的测试成绩进行分析.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,已知圆
及点
,
.
(1)若直线
平行于
,与圆
相交于
,
两点,
,求直线
的方程;
(2)在圆
上是否存在点
,使得
?若存在,求点
的个数;若不存在,说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在
,
,
,
,
,
(单位:克)中,经统计,频率分布直方图如图所示:
![]()
(1)估计这组数据的平均数(同一组中的数据以这组数据所在区间中点的值作代表);
(2)现按分层抽样从质量为
,
的芒果中随机抽取5个,再从这5个中随机抽取2个,求这2个芒果都来自同一个质量区间的概率;
(3)某经销商来收购芒果,同一组中的数据以这组数据所在区间中点的值作代表,用样本估计总体,该种植园中还未摘下的芒果大约还有1000个,经销商提出以下两种收购方案:
方案①:所有芒果以9元/千克收购
方案②:对质量低于250克的芒果以2元/个收购,对质量高于或等于250克的芒果以3元/个收购.通过计算确定种植园选择哪种方案获利更多.
参考数据:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com