【题目】(本题满分12分)如图,
是圆
的直径,点
是圆
上异于
的点,
垂直于圆
所在的平面,且
.
![]()
(Ⅰ)若
为线段
的中点,求证
平面
;
(Ⅱ)求三棱锥
体积的最大值;
(Ⅲ)若
,点
在线段
上,求
的最小值.
【答案】(Ⅰ)详见解析;(Ⅱ)
;(Ⅲ)
.
【解析】解法一:(Ⅰ)在
中,因为
,
为
的中点,
所以
.又
垂直于圆
所在的平面,所以
.
因为
,所以
平面
.
(Ⅱ)因为点
在圆
上,
所以当
时,
到
的距离最大,且最大值为
.
又
,所以
面积的最大值为
.
又因为三棱锥
的高
,故三棱锥
体积的最大值为
.
(Ⅲ)在
中,
,
,所以
.
同理
,所以
.
在三棱锥
中,将侧面
绕
旋转至平面
,使之与平面
共面,如图所示.
当
,
,
共线时,
取得最小值.
又因为
,
,所以
垂直平分
,
即
为
中点.从而
,
亦即
的最小值为
.
![]()
解法二:(Ⅰ)、(Ⅱ)同解法一.
(Ⅲ)在
中,
,
,
所以
,
.同理
.
所以
,所以
.
在三棱锥
中,将侧面
绕
旋转至平面
,使之与平面
共面,如图所示.
当
,
,
共线时,
取得最小值.
所以在
中,由余弦定理得:
![]()
![]()
.
从而
.
所以
的最小值为
.
科目:高中数学 来源: 题型:
【题目】设函数
,
.
(1)若函数f(x)在
处有极值,求函数f(x)的最大值;
(2)是否存在实数b,使得关于x的不等式
在
上恒成立?若存在,求出b的取值范围;若不存在,说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有编号为
的10个零件,测量其直径(单位:cm),得到下面数据:
编号 |
|
|
|
|
|
|
|
|
|
|
直径 | 1.51 | 1.49 | 1.49 | 1.51 | 1.49 | 1.51 | 1.47 | 1.46 | 1.53 | 1.47 |
其中直径在区间
内的零件为一等品.
(1)上述10个零件中,随机抽取1个,求这个零件为一等品的概率.
(2)从一等品零件中,随机抽取2个;
①用零件的编号列出所有可能的抽取结果;
②求这2个零件直径相等的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点P(1,f(1))处的切线方程为y=3x+1,y=f(x)在x=-2处有极值.
(1)求f(x)的解析式.
(2)求y=f(x)在[-3,1]上的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是自然对数的底数,函数
与
的定义域都是
.
(1)求函数
在点
处的切线方程;
(2)判断函数
零点个数;
(3)用
表示
的最小值,设
,
,若函数
在
上为增函数,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若数列
、
满足
(
N*),则称
为数列
的“偏差数列”.
(1)若
为常数列,且为
的“偏差数列”,试判断
是否一定为等差数列,并说明理由;
(2)若无穷数列
是各项均为正整数的等比数列,且
,
为数列
的“偏差数列”,求
的值;
(3)设
,
为数列
的“偏差数列”,
,
且
,若
对任意
恒成立,求实数M的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,以
为极点,
轴的非负半轴为极轴,建立极坐标系,曲线
的极坐标方程为
,直线
的参数方程为
为参数
,直线
与曲线
分别交于
两点.
(1)若点
的极坐标为
,求
的值;
(2)求曲线
的内接矩形周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com