(本小题满分13分)如图(甲),在直角梯形ABED中,AB//DE,AB
BE,AB
CD,且BC=CD,AB=2,F、H、G分别为AC ,AD ,DE的中点,现将△ACD沿CD折起,使平面ACD
平面CBED,如图(乙).
(1)求证:平面FHG//平面ABE;
(2)记![]()
表示三棱锥B-ACE 的体积,求
的最大值;
(3)当
取得最大值时,求二面角D-AB-C的余弦值.![]()
科目:高中数学 来源: 题型:解答题
(本小题满分12分) 如图,在四棱锥
中,底面
是正方形,侧棱
⊥底面
,
,
是
的中点,作
交
于点![]()
(1) 证明
//平面
;
(2) 证明
⊥平面
;
(3) 求二面角
—
—
的大小。![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在长方体
中,
,
,
是棱
上一点,![]()
(1)若
为CC1的中点,求异面直线A1M和C1D1所成的角的正切值;
(2)是否存在这样的
,使得平面ABM⊥平面A1B1M,若存在,求出
的值;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com