精英家教网 > 高中数学 > 题目详情

已知向量(m是常数),

(Ⅰ)若是奇函数,求m的值:

(Ⅱ)若向量中的值,求实数x的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•青岛一模)已知向量
m
=(ex,lnx+k)
n
=(1,f(x))
m
n
(k为常数,e是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与y轴垂直,F(x)=xexf′(x).
(Ⅰ)求k的值及F(x)的单调区间;
(Ⅱ)已知函数g(x)=-x2+2ax(a为正实数),若对于任意x2∈[0,1],总存在x1∈(0,+∞),使得g(x2)<F(x1),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(mx2,-1),
b
=(
1
mx-1
,x)(m为常数).
(1)若f(x)=
1
a
b
是奇函数,求m的值;
(2)若向量
a
b
的夹角<
a
b
>为[0,
π
2
)中的值,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:
①如果幂函数f (x)=(m2-3m+3)xm2-m-1的图象不过原点,则m=l或2;
②数列{an}为等比数列的充要条件为an=a1qn-1(q为常数):
③已知向量
a
=(t,2),
b
=(-3,6),若向量
a
b
的夹角为锐角,则实数t的取值范围是t<4; 
④函数f (x)=xsinx在(0,π)上有最大值,没有最小值.
其中正确命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:青岛一模 题型:解答题

已知向量
m
=(ex,lnx+k)
n
=(1,f(x))
m
n
(k为常数,e是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与y轴垂直,F(x)=xexf′(x).
(Ⅰ)求k的值及F(x)的单调区间;
(Ⅱ)已知函数g(x)=-x2+2ax(a为正实数),若对于任意x2∈[0,1],总存在x1∈(0,+∞),使得g(x2)<F(x1),求实数a的取值范围.

查看答案和解析>>

同步练习册答案