精英家教网 > 高中数学 > 题目详情

【题目】如图是一“T”型水渠的平面视图(俯视图),水渠的南北方向和东西方向轴截面均为矩形,南北向渠宽为4m,东西向渠宽m(从拐角处,即图中处开始).假定渠内的水面始终保持水平位置(即无高度差).

1)在水平面内,过点的一条直线与水渠的内壁交于两点,且与水渠的一边的夹角为,将线段的长度表示为的函数;

2)若从南面漂来一根长为7m的笔直的竹竿(粗细不计),竹竿始终浮于水平面内,且不发生形变,问:这根竹竿能否从拐角处一直漂向东西向的水渠(不会卡住)?请说明理由.

【答案】1;(2)这根竹竿能从拐角处一直漂向东西向的水渠,理由详见解析.

【解析】

1)计算,得到函数解析式.

2)设,求导得到单调区间,计算函数的最小值,得到答案.

1,所以,即

2)设

,得

且当;当

所以上单调递减;在上单调递增,

所以当时,取得极小值,即为最小值.

时,

所以

即这根竹竿能通过拐角处的长度的最大值为m

因为,所以这根竹竿能从拐角处一直漂向东西向的水渠.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线过点且渐近线为,则下列结论错误的是(

A.曲线的方程为

B.左焦点到一条渐近线距离为

C.直线与曲线有两个公共点;

D.过右焦点截双曲线所得弦长为的直线只有三条;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)若对任意恒成立,求的取值集合;

2)设,点,点,直线的斜率为求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】全国文明城市是中国所有城市品牌中含金量最高、创建难度最大的一个,是反映城市整体文明水平的综合性荣誉称号,是目前国内城市综合类评比中的最高荣誉,也是最具价值的城市品牌,作为普通市民,既是城市文明的最大受益者,更是文明城市的主要创造者,皖北某市为提高市民对文明城市创建的认识,举办了创建文明城市知识竞赛,从所有答卷中随机抽取400份试卷作为样本,将样本的成绩(满分100分,成绩均为不低于40分的整数)分成六段:后得到如图所示的频率分布直方图.

(Ⅰ)求样本的平均数;

(Ⅱ)现从该样本成绩在两个分数段内的市民中按分层抽样选取6人,求从这6人中随机选取2人,且2人的竞赛成绩之差的绝对值大于20的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是边长为4的菱形,∠BAD=60°,对角线ACBD相交于点O,四边形ACFE为梯形,EF//AC,点E在平面ABCD上的射影为OA的中点,AE与平面ABCD所成角为45°.

(Ⅰ)求证:BD⊥平面ACF

(Ⅱ)求平面DEF与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了对某种商品进行合理定价,需了解该商品的月销售量(单位:万件)与月销售单价(单位:元/件)之间的关系,对近个月的月销售量和月销售单价数据进行了统计分析,得到一组检测数据如表所示:

月销售单价(元/件)

月销售量(万件)

1)若用线性回归模型拟合之间的关系,现有甲、乙、丙三位实习员工求得回归直线方程分别为:,其中有且仅有一位实习员工的计算结果是正确的.请结合统计学的相关知识,判断哪位实习员工的计算结果是正确的,并说明理由;

2)若用模型拟合之间的关系,可得回归方程为,经计算该模型和(1)中正确的线性回归模型的相关指数分别为,请用说明哪个回归模型的拟合效果更好;

3)已知该商品的月销售额为(单位:万元),利用(2)中的结果回答问题:当月销售单价为何值时,商品的月销售额预报值最大?(精确到

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆左、右焦点分别为,离心率为,两准线间距离为8,圆O的直径为,直线l与圆O相切于第四象限点T,与y轴交于M点,与椭圆C交于点NN点在T点上方),且

1)求椭圆C的标准方程;

2)求直线l的方程;

3)求直线l上满足到距离之和为的所有点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=(x12alnxa0.

1)讨论fx)的单调性;

2)若fx)存在两个极值点x1x2x1x2),且关于x的方程fx)=bbR)恰有三个实数根x3x4x5x3x4x5),求证:2x2x1)>x5x3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对任意实数给出下列命题:①“的充要条件;②“是无理数是无理数的充要条件;③“的充分条件;④“的必要条件.其中真命题的个数是(  )

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案