【题目】在一个有穷数列每相邻两项之间添加一项,使其等于两相邻项的和,我们把这样的操作叫做该数列的一次“H扩展”. 已知数列1,2. 第一次“H扩展”后得到1,3,2;第二次“H扩展”后得到1,4,3,5,2; 那么第10次“H扩展”后得到的数列的所有项的和为( )
A.88572B.88575C.29523D.29526
科目:高中数学 来源: 题型:
【题目】已知直线![]()
为公海与领海的分界线,一艘巡逻艇在原点
处发现了北偏东
海面上
处有一艘走私船,走私船正向停泊在公海上接应的走私海轮
航行,以便上海轮后逃窜.已知巡逻艇的航速是走私船航速的2倍,且两者都是沿直线航行,但走私船可能向任一方向逃窜.
(1)如果走私船和巡逻船相距6海里,求走私船能被截获的点的轨迹;
(2)若
与公海的最近距离20海里,要保证在领海内捕获走私船,则
,
之间的最远距离是多少海里?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
,
为抛物线
上的点,若直线
经过点
且斜率为
,则称直线
为点
的“特征直线”.设
、
为方程
(
)的两个实根,记
.
(1)求点
的“特征直线”
的方程;
(2)已知点
在抛物线
上,点
的“特征直线”与双曲线
经过二、四象限的渐进线垂直,且与
轴的交于点
,点
为线段
上的点.求证:
;
(3)已知
、
是抛物线
上异于原点的两个不同的点,点
、
的“特征直线”分别为
、
,直线
、
相交于点
,且与
轴分别交于点
、
.求证:点
在线段
上的充要条件为
(其中
为点
的横坐标).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】棋盘上标有第
、
、
、
、
站,棋子开始位于第
站,棋手抛掷均匀硬币走跳棋游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到调到第
站或第
站时,游戏结束.设棋子位于第
站的概率为
.
(1)当游戏开始时,若抛掷均匀硬币
次后,求棋手所走步数之和
的分布列与数学期望;
(2)证明:
;
(3)求
、
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出定理:在圆锥曲线中,
是抛物线
的一条弦,
是
的中点,过点
且平行于
轴的直线与抛物线的交点为
.若
两点纵坐标之差的绝对值
,则
的面积
,试运用上述定理求解以下各题:
(1)若
,
所在直线的方程为
,
是
的中点,过
且平行于
轴的直线与抛物线
的交点为
,求
;
(2)已知
是抛物线
的一条弦,
是
的中点,过点
且平行于
轴的直线与抛物线的交点为
,
分别为
和
的中点,过
且平行于
轴的直线与抛物线
分别交于点
,若
两点纵坐标之差的绝对值
,求
和
;
(3)请你在上述问题的启发下,设计一种方法求抛物线:
与弦
围成成的“弓形”的面积,并求出相应面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业参加
项目生产的工人为
人,平均每人每年创造利润
万元.根据现实的需要,从
项目中调出
人参与
项目的售后服务工作,每人每年可以创造利润
万元(
),
项目余下的工人每人每年创造利图需要提高![]()
(1)若要保证
项目余下的工人创造的年总利润不低于原来
名工人创造的年总利润,则最多调出多少人参加
项目从事售后服务工作?
(2)在(1)的条件下,当从
项目调出的人数不能超过总人数的
时,才能使得
项目中留岗工人创造的年总利润始终不低于调出的工人所创造的年总利润,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体
中,点
在线段
上移动,有下列判断:①平面
平面
;②平面
平面
;③三棱锥
的体积不变;④
平面
.其中,正确的是______.(把所有正确的判断的序号都填上)
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com