【题目】已知函数
(其中
,
,
,
是实数常数,
).
(1)若
,函数
的图象关于点
成中心对称,求
,
的值;
(2)若函数
满足条件(1),且对任意
,总有
,求
的取值范围;
(3)若
,函数
是奇函数,
,
,且对任意
时,不等式
恒成立,求负实数
的取值范围.
【答案】(1)
(2)
(3)![]()
【解析】
(1)将
化为
,类比
的图象得对称中心
,对应相等可求得结果;(2)整理可得:
;当
时符合题意;
时由单调性可知不合题意;当
时,可知只需
,从而得到
的范围;综合三种情况得到结果;(3)根据奇偶性和函数值可得:
,根据
得到
,根据单调性求解出
的最小值,则根据
求得结果.
(1)
![]()
类比函数
的图象,可知函数
的图象的对称中心是![]()
又
函数
的图象的对称中心
![]()
(2)由(1)知,![]()
依据题意,对任意
,恒有
.
①当
时,
,符合题意
②当
时,对任意
,则![]()
恒有
,不符合题意;
③当
时,函数
在
上是单调递减函数,且满足![]()
因此,只需
即可
解得:![]()
综上所述,实数
的范围![]()
(3)依据题设:
,解得:![]()
于是![]()
由
,得
,
![]()
![]()
因此![]()
函数
在
是增函数
.
所求负实数
的取值范围![]()
科目:高中数学 来源: 题型:
【题目】定义:若存在常数
,使得对定义域D内的任意两个不同的实数
,均有:
成立,则称
在D上满足利普希茨(Lipschitz)条件.
(1)试举出一个满足利普希茨(Lipschitz)条件的函数及常数
的值,并加以验证;
(2)若函数
在
上满足利普希茨(Lipschitz)条件,求常数
的最小值;
(3)现有函数
,请找出所有的一次函数
,使得下列条件同时成立:
①函数
满足利普希茨(Lipschitz)条件;
②方程
的根
也是方程
的根,且
;
③方程
在区间
上有且仅有一解.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大型工厂有
台大型机器,在
个月中,
台机器至多出现
次故障,且每台机器是否出现故障是相互独立的,出现故障时需
名工人进行维修.每台机器出现故障的概率为
.已知
名工人每月只有维修
台机器的能力,每台机器不出现故障或出现故障时有工人维修,就能使该厂获得
万元的利润,否则将亏损
万元.该工厂每月需支付给每名维修工人
万元的工资.
(1)若每台机器在当月不出现故障或出现故障时有工人进行维修,则称工厂能正常运行.若该厂只有
名维修工人,求工厂每月能正常运行的概率;
(2)已知该厂现有
名维修工人.
(ⅰ)记该厂每月获利为
万元,求
的分布列与数学期望;
(ⅱ)以工厂每月获利的数学期望为决策依据,试问该厂是否应再招聘
名维修工人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数
,若函数
是增函数,则称函数
具有性质A.
若
,求
的解析式,并判断
是否具有性质A;
判断命题“减函数不具有性质A”是否真命题,并说明理由;
若函数
具有性质A,求实数k的取值范围,并讨论此时函数
在区间
上零点的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
.
(1)若函数
为偶函数,求实数
的值;
(2)若
,
,且函数
在
上是单调函数,求实数
的值;
(3)若
,若当
时,总有
,使得
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个口袋中装有9个大小形状完全相同的球,球的编号分别为1,2,…,9,随机摸出两个球,则两个球的编号之和大于9的概率是______(结果用分数表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国内某知名企业为适应发展的需要,计划加大对研发的投入,据了解,该企业原有100名技术人员,年人均投入
万元,现把原有技术人员分成两部分:技术人员和研发人员,其中技术人员
名(
且
),调整后研发人员的年人均投入增加
%,技术人员的年人均投入调整为
万元.
(1)要使这
名研发人员的年总投入恰好与调整前100名技术人员的年总投入相同,求调整后的技术人员的人数;
(2)是否存在这样的实数
,使得调整后,在技术人员的年人均投入不减少的情况下,研发人员的年总投入始终不低于技术人员的年总投入?若存在,求出
的范围,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】由A,B,C,…等7人担任班级的7个班委.
(1)若正、副班长两职只能由A,B,C这三人中选两人担任,则有多少种分工方案?
(2)若正、副班长两职至少要选A,B,C这三人中的1人担任,有多少种分工方案?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com