(本小题满分12分)已知椭圆C:
(
.![]()
(1)若椭圆的长轴长为4,离心率为
,求椭圆的标准方程;
(2)在(1)的条件下,设过定点
的直线
与椭圆C交于不同的两点
,且
为锐角(其中
为坐标原点),求直线
的斜率k的取值范围;
(3)如图,过原点
任意作两条互相垂直的直线与椭圆
(
)相交于
四点,设原点
到四边形
一边的距离为
,试求
时
满足的条件.
(1)
(2)
(3)![]()
解析试题分析:(1)![]()
![]()
……2分
(2)显然直线x=0不满足题设条件,可设直线l:![]()
由
得
.
,
……4分
(1)
又![]()
由
∴
所以![]()
(2)由(1)(2)得
。……6分
(3)由椭圆的对称性可知PQSR是菱形,原点O到各边的距离相等。
当P在y轴上,Q在x轴上时,直线PQ的方程为
,由d=1得
,……
当P不在y轴上时,设直线PS的斜率为k,
,则直线RQ的斜率为
,![]()
由
,得
……(1),同理
……(2) ……8分
在Rt△OPQ中,由
,即![]()
所以
,化简得
,
,即
。
综上,d=1时a,b满足条件
……12分
考点:椭圆方程及性质,直线与椭圆相交问题
点评:直线与椭圆相交联立方程利用韦达定理设而不求是常用的思路,第二问中将夹角是锐角时转化为向量数量积小于零,从而可用点的坐标表示,
科目:高中数学 来源: 题型:解答题
已知点M是圆C:
上的一点,且![]()
轴,
为垂足,点
满足
,记动点
的轨迹为曲线E.
(Ⅰ)求曲线E的方程;
(Ⅱ)若AB是曲线E的长为2的动弦,O为坐标原点,求
面积S的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆![]()
的离心率为
,定点
,椭圆短轴的端点是
,
,且
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设过点
且斜率不为
的直线交椭圆
于
,
两点.试问
轴上是否存在定点
,使
平分
?若存在,求出点
的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设
分别是椭圆的
左,右焦点。
(Ⅰ)若
是第一象限内该椭圆上的一点,且![]()
,求点
的坐标。
(Ⅱ)设过定点
的直线与椭圆交于不同的两点
,且
为锐角(其中O为坐标原点),求直线
的斜率
的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知点
在椭圆C:
上,且椭圆C的离心率
.![]()
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点
作直线交椭圆C于点A.B.△ABQ的垂心为T,是否存在实数m ,使得垂心T在y轴上.若存在,求出实数m的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知三点
,曲线
上任一点
满足
=![]()
(1) 求曲线
的方程;
(2) 设
是(1)中所求曲线
上的动点,定点
,线段
的垂直平分线与
轴交于点
,求实数
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆
的中心在坐标原点、对称轴为坐标轴,且抛物线
的焦点是它的一个焦点,又点
在该椭圆上.
(1)求椭圆
的方程;
(2)若斜率为
直线
与椭圆
交于不同的两点
,当
面积的最大值时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知直线l1:4x:-3y+6=0和直线l2x=-p/2:.若拋物线C:y2=2px上的点到直线l1和直线l2的距离之和的最小值为2.
(I )求抛物线C的方程;
(II)若以拋物线上任意一点M为切点的直线l与直线l2交于点N,试问在x轴上是否存 在定点Q,使Q点在以MN为直径的圆上,若存在,求出点Q的坐标,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com