精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ln(
1
2
+
1
2
ax)+x2-ax
.(a为常数,a>0)
(Ⅰ)若x=
1
2
是函数f(x)的一个极值点,求a的值;
(Ⅱ)求证:当0<a≤2时,f(x)在[
1
2
,+∞)
上是增函数;
(Ⅲ)若对任意的a∈(1,2),总存在 x0∈[
1
2
,1]
,使不等式f(x0)>m(1-a2)成立,求实数m的取值范围.
分析:(Ⅰ)先求出其导函数:f′(x)=
1
2
a
1
2
+
1
2
ax
+2x-a=
2ax(x-
a2-2
2a
)
1+ax
,利用x=
1
2
是函数f(x)的一个极值点对应的结论f'(
1
2
)=0即可求a的值;
(Ⅱ)利用:f′(x)=
1
2
a
1
2
+
1
2
ax
+2x-a=
2ax(x-
a2-2
2a
)
1+ax
,在0<a≤2时,分析出因式中的每一项都大于等于0即可证明结论;

(Ⅲ)先由(Ⅱ)知,f(x)在[
1
2
,1]
上的最大值为f(1)=ln(
1
2
+
1
2
a)+1-a
,把问题转化为对任意的a∈(1,2),不等式ln(
1
2
+
1
2
a)+1-a+m(a2-1)>0
恒成立;然后再利用导函数研究不等式左边的最小值看是否符合要求即可求实数m的取值范围.
解答:解:由题得:f′(x)=
1
2
a
1
2
+
1
2
ax
+2x-a=
2ax(x-
a2-2
2a
)
1+ax

(Ⅰ)由已知,得f′(
1
2
)=0
a2-2
2a
≠0
,∴a2-a-2=0,∵a>0,∴a=2.(2分)
(Ⅱ)当0<a≤2时,∵
a2-2
2a
-
1
2
=
a2-a-2
2a
=
(a-2)(a+1)
2a
≤0
,∴
1
2
a2-2
2a

∴当x≥
1
2
时,x-
a2-2
2a
≥0
.又
2ax
1+ax
>0

∴f'(x)≥0,故f(x)在[
1
2
,+∞)
上是增函数.(5分)
(Ⅲ)a∈(1,2)时,由(Ⅱ)知,f(x)在[
1
2
,1]
上的最大值为f(1)=ln(
1
2
+
1
2
a)+1-a

于是问题等价于:对任意的a∈(1,2),不等式ln(
1
2
+
1
2
a)+1-a+m(a2-1)>0
恒成立.
g(a)=ln(
1
2
+
1
2
a)+1-a+m(a2-1)
,(1<a<2)
g′(a)=
1
1+a
-1+2ma=
a
1+a
[2ma-(1-2m)]

当m=0时,g′(a)=
-a
1+a
<0
,∴g(a)在区间(1,2)上递减,此时,g(a)<g(1)=0,
由于a2-1>0,∴m≤0时不可能使g(a)>0恒成立,
故必有m>0,∴g′(a)=
2ma
1+a
[a-(
1
2m
-1)]

1
2m
-1>1
,可知g(a)在区间(1,min{2,
1
2m
-1})
上递减,在此区间上,有g(a)<g(1)=0,与g(a)>0恒成立矛盾,故
1
2m
-1≤1

这时,g'(a)>0,g(a)在(1,2)上递增,恒有g(a)>g(1)=0,满足题设要求,
m>0
1
2m
-1≤1
,即m≥
1
4

所以,实数m的取值范围为[
1
4
,+∞)
.(14分)
点评:本题第一问主要考查利用极值求对应变量的值.可导函数的极值点一定是导数为0的点,但导数为0的点不一定是极值点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案