(本题满分14分)
(文)如图,|AB|=2,O为AB中点,直线
过B且垂直于AB,过A的动直线与
交于点C,点M在线段AC上,满足
=
.
![]()
(I)求点M的轨迹方程;
(II)若过B点且斜率为-
的直线与轨迹M交于点P,点Q(t,0)是x轴上任意一点,求当ΔBPQ为锐角三角形时t的取值范围.
(1) x2+4y2=1(y≠0); (2) -
<t<0。
【解析】(1)设M(x,y),C(1,y0),然后再此条件
=
坐标化可得
=
,
再根据A、M、C三点一线,∴
=
,然后两式联立消去y0,即可得到点M的轨迹方程.要注意
.
(2)用向量判定是锐角的条件
·
>0,并且
和
不共线,然后用坐标表示出来,即可得到t的取值范围.
(1)设M(x,y),C(1,y0),∵
=
,∴
=
(2’)
又A、M、C三点一线,∴
=
②
(4’)
由(1)、(2)消去y0,得x2+4y2=1(y≠0) (6’)
![]()
(2)P(0,
)是轨迹M短轴端点,∴t≥0时∠PQB或∠PBQ不为锐角,∴t<0
又∠QPB为锐角,∴
·
>0,∴(t,-
)(1,-
)=t+
>0,∴-
<t<0
(12’)
科目:高中数学 来源: 题型:
| π |
| 3 |
|
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,
为
上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;(2)求三棱锥D-AEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题
(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若A
B=[0,3],求实数m的值
(Ⅱ)若A
CRB,求实数m的取值范围
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题
(本题满分14分)
已知点
是⊙
:
上的任意一点,过
作
垂直
轴于
,动点
满足
。
(1)求动点
的轨迹方程;
(2)已知点
,在动点
的轨迹上是否存在两个不重合的两点
、
,使
(O是坐标原点),若存在,求出直线
的方程,若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题
(本题满分14分)已知函数
.
(1)求函数
的定义域;
(2)判断
的奇偶性;
(3)方程
是否有根?如果有根
,请求出一个长度为
的区间
,使![]()
![]()
;如果没有,请说明理由?(注:区间的长度为
).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com