(本题满分14分) 已知F1、F2是椭圆
的左、右焦点,A是椭圆上位于第一象限内的一点,点B也在椭圆上,且满足
(
是坐标原点),
,若椭圆的离心率等于
.
(Ⅰ)求直线AB的方程;
(Ⅱ)若三角形ABF2的面积等于4
,求椭圆的方程;
(Ⅲ)在(Ⅱ)的条件下,椭圆上是否存在点M,使得三角形MAB的面积等于8
.
(Ⅰ) ![]()
(Ⅱ) ![]()
(Ⅲ)椭圆上不存在点M使得三角形MAB的面积等于![]()
【解析】本试题主要是考查了直线方程的求解,以及椭圆方程的求解和三角形面颊的综合运用。
(1)根据已知的向量关系,直线过原点,并且向量的垂直关系可以得到点A的坐标,然后将点A的坐标代入椭圆方程中可知得到直线的方程。
(2)连结AF1、BF1、AF2、BF2,由椭圆的对称性可知,参数a,bc的关系式,进而得到椭圆的方程。
(3)由于由(Ⅱ)可以求得|AB|=2|OA|
假设在椭圆上存在点M使得三角形MAB的面积等于8![]()
设点M到直线AB的距离为d,则应有![]()
利用三角形的面积公式得到。
解:(Ⅰ)由
知,直线AB经过原点,又由
知
,因为椭圆的离心率等于
……2分
设A(
),由
知![]()
∴A(
),代入椭圆方程得
∴A(
),故直线AB的斜率![]()
因此直线AB的方程为
……………4分
(Ⅱ)连结AF1、BF1、AF2、BF2,由椭圆的对称性可知
,所以
……………6分
又由
解得
故椭圆方程为
……………8分
(Ⅲ)由(Ⅱ)可以求得|AB|=2|OA|=2
……………9分
假设在椭圆上存在点M使得三角形MAB的面积等于8![]()
设点M到直线AB的距离为
,则应有![]()
∴
……………10分
与AB平行且距离为4的直线为![]()
消去x得
……………13分
此方程无解故椭圆上不存在点M使得三角形MAB的面积等于
……………14分
另解:设点P(4
)为椭圆上任意一点
则P到直线
的距离为
……………13分
故椭圆上不存在点M使得三角形MAB的面积等于
……………14分
科目:高中数学 来源: 题型:
| π |
| 3 |
|
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,
为
上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;(2)求三棱锥D-AEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题
(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若A
B=[0,3],求实数m的值
(Ⅱ)若A
CRB,求实数m的取值范围
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题
(本题满分14分)
已知点
是⊙
:
上的任意一点,过
作
垂直
轴于
,动点
满足
。
(1)求动点
的轨迹方程;
(2)已知点
,在动点
的轨迹上是否存在两个不重合的两点
、
,使
(O是坐标原点),若存在,求出直线
的方程,若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题
(本题满分14分)已知函数
.
(1)求函数
的定义域;
(2)判断
的奇偶性;
(3)方程
是否有根?如果有根
,请求出一个长度为
的区间
,使![]()
![]()
;如果没有,请说明理由?(注:区间的长度为
).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com