【题目】某大型单位举行了一次全体员工都参加的考试,从中随机抽取了20人的分数.以下茎叶图记录了他们的考试分数(以十位数字为茎,个位数字为叶):
![]()
若分数不低于95分,则称该员工的成绩为“优秀”.
(1)从这20人中任取3人,求恰有1人成绩“优秀”的概率;
(2)根据这20人的分数补全下方的频率分布表和频率分布直方图,并根据频率分布直方图解决下面的问题.
组别 | 分组 | 频数 | 频率 |
|
1 |
| |||
2 |
| |||
3 |
| |||
4 |
|
![]()
①估计所有员工的平均分数(同一组中的数据用该组区间的中点值作代表);
②若从所有员工中任选3人,记
表示抽到的员工成绩为“优秀”的人数,求
的分布列和数学期望.
【答案】(1)
;(2)①82,②分布列见解析,![]()
【解析】
(1)从20人中任取3人共有
种结果,恰有1人成绩“优秀”共有
种结果,利用古典概型的概率计算公式计算即可;
(2)①平均数的估计值为各小矩形的组中值与其面积乘积的和;②要注意
服从的是二项分布,不是超几何分布,利用二项分布的分布列及期望公式求解即可.
(1)设从20人中任取3人恰有1人成绩“优秀”为事件
,
则
,所以,恰有1人“优秀”的概率为
.
(2)
组别 | 分组 | 频数 | 频率 |
|
1 |
| 2 |
| 0.01 |
2 |
| 6 |
| 0.03 |
3 |
| 8 |
| 0.04 |
4 |
| 4 |
| 0.02 |
![]()
①
,
估计所有员工的平均分为82
②
的可能取值为0、1、2、3,随机选取1人是“优秀”的概率为
,
∴
;
;
;
;
∴
的分布列为
| 0 | 1 | 2 | 3 |
|
|
|
|
|
∵
,∴数学期望
.
科目:高中数学 来源: 题型:
【题目】设
,
.已知函数
,
.
(Ⅰ)求
的单调区间;
(Ⅱ)已知函数
和
的图象在公共点(x0,y0)处有相同的切线,
(i)求证:
在
处的导数等于0;
(ii)若关于x的不等式
在区间
上恒成立,求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市花费3万元购进一批同规格的月饼,进价为
元/盒.上架销售前发现有10盒包装损坏而不能出售,若能将余下的月饼按高出进价50元/盒全部售出,则可最终获利8000元.
(1)超市共购进该规格的月饼多少盒?
(2)现进行促销活动若顾客一次性购买总价不低于600元的月饼,可在总价的基础上优惠
元但不得低于促销前总价的9折,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学大学毕业后,决定利用所学专业进行自主创业,经过市场调查,生产一小型电子产品需投入固定成本2万元,每生产
万件,需另投入流动成本
万元,当年产量小于
万件时,
(万元);当年产量不小于7万件时,
(万元).已知每件产品售价为6元,假若该同学生产的商品当年能全部售完.
(1)写出年利润
(万年)关于年产量
(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)
(2)当年产量约为多少万件时,该同学的这一产品所获年利润最大?最大年利润是多少?
(取
).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个地区共有5个乡镇,共30万人,其人口比例为3∶2∶5∶2∶3,从这30万人中抽取一个300人的样本,分析某种疾病的发病率.已知这种疾病与不同的地理位置及水土有关,则应采取什么样的抽样方法?并写出具体过程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)为预防H1N1病毒爆发,某生物技术公司研制出一种新流感
疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司
选定2000个流感样本分成三组,测试结果如下表:
分组 | A组 | B组 | C组 |
疫苗有效 | 673 |
|
|
疫苗无效 | 77 | 90 |
|
已知在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33.
(I)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取样本多少个?
(II)已知
,
,求通过测试的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com