【题目】如图,已知四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为MC的中点,则下列结论不正确的是( )
![]()
A. 平面
平面ABN B. ![]()
C. 平面
平面AMN D. 平面
平面AMN
【答案】C
【解析】
将几何体补成正方体后再进行判断.
分别过A,C作平面ABCD的垂线AP,CQ,使得AP=CQ=1,连接PM,PN,QM,QN,将几何体补成棱长为1的正方体.
∵BC⊥平面ABN,BC平面BCE,
∴平面BCE⊥平面ABN,故A正确;
连接PB,则PB∥MC,显然PB⊥AN,∴MC⊥AN,故B正确;
取MN的中点F,连接AF,CF,AC.
∵△AMN和△CMN都是边长为
的等边三角形,
∴AF⊥MN,CF⊥MN,
∴∠AFC为二面角A-MN-C的平面角,
∵AF=CF=
,AC=
,∴AF2+CF2≠AC2,即∠AFC≠
,
∴平面CMN与平面AMN不垂直,故C错误;
∵DE∥AN,MN∥BD,
∴平面BDE∥平面AMN,故D正确.
故选C.
科目:高中数学 来源: 题型:
【题目】设数列
的前
项和为
,对任意
,点
都在函数
的图象上.
(1)求
,归纳数列
的通项公式(不必证明).
(2)将数列
依次按
项、
项、
项、
项、
项循环地分为
,![]()
,
,
,各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为
,求
的值.
(3)设
为数列
的前
项积,若不等式
对一切
都成立,其中
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为定义在
上的奇函数,当
时,有
,且当
时,
,下列命题正确的是( )
A.
B.函数
在定义域上是周期为
的函数
C.直线
与函数
的图象有
个交点D.函数
的值域为![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线:
,
,
,
,
四点都在抛物线
上.
(1)若线段
的斜率为
,求线段
中点的纵坐标;
(2)记
,若直线
,
均过定点
,且
,
,
分别为
,
的中点,证明:
,
,
三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线l的参数方程为
(t为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系.曲线C的极坐标方程为
.
(1)求直线l的普通方程及曲线C的直角坐标方程;
(2)设点
,直线l与曲线C相交于A,B两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高铁和航空的飞速发展不仅方便了人们的出行,更带动了我国经济的巨大发展.据统 计,在2018年这一年内从
市到
市乘坐高铁或飞机出行的成年人约为
万人次.为了 解乘客出行的满意度,现从中随机抽取
人次作为样本,得到下表(单位:人次):
满意度 | 老年人 | 中年人 | 青年人 | |||
乘坐高铁 | 乘坐飞机 | 乘坐高铁 | 乘坐飞机 | 乘坐高铁 | 乘坐飞机 | |
10分(满意) | 12 | 1 | 20 | 2 | 20 | 1 |
5分(一般) | 2 | 3 | 6 | 2 | 4 | 9 |
0分(不满意) | 1 | 0 | 6 | 3 | 4 | 4 |
(span>1)在样本中任取
个,求这个出行人恰好不是青年人的概率;
(2)在2018年从
市到
市乘坐高铁的所有成年人中,随机选取
人次,记其中老年人出行的人次为
.以频率作为概率,求
的分布列和数学期望;
(3)如果甲将要从
市出发到
市,那么根据表格中的数据,你建议甲是乘坐高铁还是飞机? 并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方
中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价,现从评价系统中选出
条较为详细的评价信息进行统计,车辆状况和优惠活动评价的
列联表如下:
对优惠活动好评 | 对优惠活动不满意 | 合计 | |
对车辆状况好评 |
|
|
|
对车辆状况不满意 |
|
|
|
合计 |
|
|
|
(1)能否在犯错误的概率不超过
的前提下认为优惠活动好评与车辆状况好评之间有关系?
(2)为了回馈用户,公司通过
向用户随机派送每张的面额为
元,
元,
元的三种骑行券,用户每次使用
扫码用车后,都可获得一张骑行券,用户骑行一-次获得
元券,获得
元券的概率分别是
,且各次获取骑行券的结果相互独立.若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额之和为
,求随机变量
的分布列和数学期望.
附:下边的临界值表仅供参考:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(参考公式:
,其中
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
是两条不同的直线,
是两个不同的平面,则下列命题中正确命题的序号是( )
①若直线
平行于平面
内的无数条直线,则直线
∥平面
.
②若直线
∥平面
,直线
∥直线
,则直线
平行于平面
内的无数条直线.
③若直线
不平行,则
不可能垂直于同一平面.
④若直线
∥平面
,平面
平面
,则直线
平面![]()
A.①②B.②③C.②④D.③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com