【题目】高铁和航空的飞速发展不仅方便了人们的出行,更带动了我国经济的巨大发展.据统 计,在2018年这一年内从
市到
市乘坐高铁或飞机出行的成年人约为
万人次.为了 解乘客出行的满意度,现从中随机抽取
人次作为样本,得到下表(单位:人次):
满意度 | 老年人 | 中年人 | 青年人 | |||
乘坐高铁 | 乘坐飞机 | 乘坐高铁 | 乘坐飞机 | 乘坐高铁 | 乘坐飞机 | |
10分(满意) | 12 | 1 | 20 | 2 | 20 | 1 |
5分(一般) | 2 | 3 | 6 | 2 | 4 | 9 |
0分(不满意) | 1 | 0 | 6 | 3 | 4 | 4 |
(span>1)在样本中任取
个,求这个出行人恰好不是青年人的概率;
(2)在2018年从
市到
市乘坐高铁的所有成年人中,随机选取
人次,记其中老年人出行的人次为
.以频率作为概率,求
的分布列和数学期望;
(3)如果甲将要从
市出发到
市,那么根据表格中的数据,你建议甲是乘坐高铁还是飞机? 并说明理由.
【答案】(1)
(2)分布列见解析,数学期望
(3)建议甲乘坐高铁从
市到
市.见解析
【解析】
(1)根据分层抽样的特征可以得知,样本中出行的老年人、中年人、青年人人次分别为
,
,
,即可按照古典概型的概率计算公式计算得出;
(2)依题意可知
服从二项分布,先计算出随机选取
人次,此人为老年人概率是
,所以
,即
,即可求出
的分布列和数学期望;
(3)可以计算满意度均值来比较乘坐高铁还是飞机.
(1)设事件:“在样本中任取
个,这个出行人恰好不是青年人”为
,
由表可得:样本中出行的老年人、中年人、青年人人次分别为
,
,
,
所以在样本中任取
个,这个出行人恰好不是青年人的概率
.
(2)由题意,
的所有可能取值为:
因为在2018年从
市到
市乘坐高铁的所有成年人中,随机选取
人次,此人
为老年人概率是
,
所以
,
,
,
所以随机变量
的分布列为:
|
|
|
|
|
|
|
|
故
.
(3)答案不唯一,言之有理即可.
如可以从满意度的均值来分析问题,参考答案如下:
由表可知,乘坐高铁的人满意度均值为:![]()
乘坐飞机的人满意度均值为:![]()
因为
,
所以建议甲乘坐高铁从
市到
市.
科目:高中数学 来源: 题型:
【题目】已知等差数列
的前
项和为
,等比数列
的前
项和为
,且![]()
(1)设
,求数列
的通项公式;
(2)在(1)的条件下,且
,求满足
的所有正整数
;
(3)若存在正整数
,且
,试比较
与
的大小,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
,其中a为常数,e是自然对数的底数,曲线
在其与y轴的交点处的切线记作
,曲线
在其与x轴的交点处的切线记作
,且
.
(1)求
之间的距离;
(2)若存在x使不等式
成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为MC的中点,则下列结论不正确的是( )
![]()
A. 平面
平面ABN B. ![]()
C. 平面
平面AMN D. 平面
平面AMN
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,
. 对于函数
、
,若存在常数
,
,使得
,不等式
都成立,则称直线是
函数
与
的分界线.
(1)讨论函数
的单调性;
(2)当
时,试探究函数
与
是否存在“分界线”?若存在,求出分界线方程;若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合M是满足下列性质的函数
的全体;在定义域内存在实数t,使得
.
(1)判断
是否属于集合M,并说明理由;
(2)若
属于集合M,求实数a的取值范围;
(3)若
,求证:对任意实数b,都有
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
(
),其准线方程
,直线
过点
(
),且与抛物线交于
、
两点,
为坐标原点.
(1)求抛物线方程,并注明:
的值与直线
倾斜角的大小无关;
(2)若
为抛物线上的动点,记
的最小值为函数
,求
的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f (x)=ax﹣ex(a∈R),g(x)=
.
(Ⅰ)求函数f (x)的单调区间;
(Ⅱ)x0∈(0,+∞),使不等式f (x)≤g(x)﹣ex成立,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com