【题目】已知函数
,其最小正周期为
.
(1)求
的表达式;
(2)将函数
的图象向右平移
个单位长度后,再将得到的图象上各点的横坐标伸长到原来的
倍(纵坐标不变),得到函数
的图象,若关于
的方程
在区间
上有且只有一个实数解,求实数
的取值范围.
【答案】(1)
;(2)
.
【解析】
(1)利用三角恒等变换思想化简函数
的解析式为
,利用函数
的最小正周期可求得
的值,由此可得出函数
的解析式;
(2)利用三角函数图象变换可得
,由
可计算出
的取值范围,由
可得
,可得出直线
与函数
在区间
上的图象有且只有一个交点,数形结合可求得实数
的取值范围.
(1)![]()
,
又因为函数
的最小正周期
,所以
,所以
,
所以
;
(2)将函数
的图象向右平移
个单位长度后,得到
的图象.再将所得图象上所有点的横坐标伸长到原来的
倍(纵坐标不变),得到
的图象,所以
,
当
时,
,
令
,可得
,令
,可知直线
与函数
在区间
上的图象有且只有一个交点,如下图所示:
![]()
由图象可知,当
或
时,
直线
与函数
在区间
上的图象有且只有一个交点.
所以实数
的取值范围是
.
科目:高中数学 来源: 题型:
【题目】从2017年1月18日开始,支付宝用户可以通过“
扫‘福’字”和“参与蚂蚁森林”两种方式获得福卡(爱国福、富强福、和谐福、友善福,敬业福),除夕夜22:18,每一位提前集齐五福的用户都将获得一份现金红包.某高校一个社团在年后开学后随机调查了80位该校在读大学生,就除夕夜22:18之前是否集齐五福进行了一次调查(若未参与集五福的活动,则也等同于未集齐五福),得到具体数据如下表:
![]()
(1)根据如上的列联表,能否在犯错误的概率不超过0.05的前提下,认为“集齐五福与性别有关”?
(2)计算这80位大学生集齐五福的频率,并据此估算该校10000名在读大学生中集齐五福的人数;
(3)为了解集齐五福的大学生明年是否愿意继续参加集五福活动,该大学的学生会从集齐五福的学生中,选取2位男生和3位女生逐个进行采访,最后再随机选取3次采访记录放到该大学的官方网站上,求最后被选取的3次采访对象中至少有一位男生的概率.
参考公式:
.
附表:
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方
中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价.现从评价系统中选出
条较为详细的评价信息进行统计,车辆状况的优惠活动评价的
列联表如下:
![]()
(1)能否在犯错误的概率不超过
的前提下认为优惠活动好评与车辆状况好评之间有关系?
(2)为了回馈用户,公司通过
向用户随机派送骑行券.用户可以将骑行券用于骑行付费,也可以通过转赠给好友.某用户共获得了5张骑行券,其中只有2张是一元券.现该用户从这5张骑行券中随机选取2张转赠给好友,求选取的张中至少有1张是一元券的概率.
![]()
参考公式:
,其中
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业三月中旬生产A、B、C三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:
产品类别 | A | B | C |
产品数量(件) | 1 300 | ||
样本容量(件) | 130 |
由于不小心,表格中A、C产品的有关数据已被污染看不清楚,统计员记得A产品的样本容量比C产品的样本容量多10,根据以上信息,可得C的产品数量是( )
A.80B.800C.90D.900
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C所对的边分别为a,b,c.向量
=(a,
b)与
=(cosA,sinB)平行.
(1)求A;
(2)若a=
,b=2,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在
中,
,
,
所对的边分别为
,
,
,过
作直线
与边
相交于点
,
,
.当直线
时,
值为
;当
为边
的中点时,
值为
.当
,
变化时,记
(即
、
中较大的数),则
的最小值为( )
A.
B.
C.
D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图半圆
的直径为4,
为直径
延长线上一点,且
,
为半圆周上任一点,以
为边作等边
(
、
、
按顺时针方向排列)
![]()
(1)若等边
边长为
,
,试写出
关于
的函数关系;
(2)问
为多少时,四边形
的面积最大?这个最大面积为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E、F分别为BC、AD的中点,点M在线段PD上.
![]()
(1)求证:EF⊥平面PAC;
(2)如果直线ME与平面PBC所成的角和直线ME与平
面ABCD所成的角相等,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com