精英家教网 > 高中数学 > 题目详情
直线L:y=k(x+3)与圆O:x2+y2=4交于A、B两点,则当△AOB的面积最大时,k=______.
由圆O:x2+y2=4,得到圆心坐标为(0,0),半径r=2,
把直线l的方程为y=k(x+3),整理为一般式方程得:kx-y+3k=0,
∴圆心O(0,0)到直线AB的距离d=
3|k|
k2+1
,(9分)
弦AB的长度|AB|=2
r2-d2
=2
4 -d2

S△ABC=
1
2
|AB|d=d
4-d2
=
d2(4-d2)
d2+(4-d2)
2
=2
,(11分)
当且仅当d2=2时取等号,S△ABC取得最大值,最大值为2,
此时
9k2
k2+1
=2
,解得k=±
14
7

故答案为:±
14
7
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知直角三角形PAB的直角顶点为B,点P的坐标为(3,0),点B在y轴上,点A在x轴的负半轴上,在BA的延长线上取一点C,使
BC
=3
BA

(1)当B在y轴上移动时,求动点C的轨迹方程;
(2)若直线l:y=k(x-1)与点C的轨迹交于M、N两点,设D(-1,0),当∠MDN为锐角时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l:y=k(x-2)+2与圆x2+y2-2x-2y=0有两个不同的公共点,则k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•成都三模)已知O为坐标原点,点E、F的坐标分别为(-
2
,0)、(
2
,0),点A、N满足
AE
=2
3
ON
=
1
2
(
OA
+
OF
)
,过点N且垂直于AF的直线交线段AE于点M,设点M的轨迹为C.
(1)求轨迹C的方程;
(2)若轨迹C上存在两点P和Q关于直线l:y=k(x+1)(k≠0)对称,求k的取值范围;
(3)在(2)的条件下,设直线l与轨迹C交于不同的两点R、S,对点B(1,0)和向量a=(-
3
,3k),求
BR
BS
-|a|2
取最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x+1)2+(y-2)2=4
(1)若直线l:y=k(x-2)与圆C有且只有一个公共点,求直线l的斜率k的值;
(2)若直线m:y=kx+2被圆C截得的弦AB满足OA⊥OB(O是坐标原点),求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=8x,O为坐标原点,动直线l:y=k(x+2)与抛物线C交于不同两点A,B
(1)求证:
OA
OB
为常数;
(2)求满足
OM
=
OA
+
OB
的点M的轨迹方程.

查看答案和解析>>

同步练习册答案