函数y=2x3﹣3x2﹣12x+5在区间[0,3]上最大值与最小值分别是( )
|
| A. | 5,﹣15 | B. | 5,﹣4 | C. | ﹣4,﹣15 | D. | 5,﹣16 |
考点:
利用导数求闭区间上函数的最值.
专题:
计算题.
分析:
对函数y=2x3﹣3x2﹣12x+5求导,利用导数研究函数在区间[0,3]上的单调性,根据函数的变化规律确定函数在区间[0,3]上最大值与最小值位置,求值即可
解答:
解:由题意y'=6x2﹣6x﹣12
令y'>0,解得x>2或x<﹣1
故函数y=2x3﹣3x2﹣12x+5在(0,2)减,在(2,3)上增
又y(0)=5,y(2)=﹣15,y(3)=﹣4
故函数y=2x3﹣3x2﹣12x+5在区间[0,3]上最大值与最小值分别是5,﹣15
故选A
点评:
本题考查用导数判断函数的单调性,利用单调性求函数的最值,利用单调性研究函数的最值,是导数的重要运用,注意上类题的解题规律与解题步骤.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| x2 | 6 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com