设A,B分别为椭圆
+
=1(a>b>0)的左、右顶点,(1,)为椭圆上一点,椭圆长半轴长等于焦距.
(1)求椭圆的方程;
(2)设P(4,x)(x≠0),若直线AP,BP分别与椭圆相交于异于A,B的点M,N,求证:∠MBN为钝角.
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,已知抛物线
:
,在此抛物线上一点![]()
到焦点的距离是3.
(1)求此抛物线的方程;
(2)抛物线
的准线与
轴交于
点,过
点斜率为
的直线
与抛物线
交于
、
两点.是否存在这样的
,使得抛物线
上总存在点
满足
,若存在,求
的取值范围;若不存在,说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆C的中心在原点,焦点在x轴上,两焦点F1,F2之间的距离为2
,椭圆上第一象限内的点P满足PF1⊥PF2,且△PF1F2的面积为1.
(1)求椭圆C的标准方程;
(2)若椭圆C的右顶点为A,直线l:y=kx+m(k≠0)与椭圆C交于不同的两点M,N,且满足AM⊥AN.求证:直线l过定点,并求出定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(
,0).
(1)求双曲线C的方程;
(2)若直线l:y=kx+
与双曲线C恒有两个不同的交点A和B,且
·
>2(其中O为原点),求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
(
)的左焦点为
,离心率为
.
(1)求椭圆C的标准方程;
(2)设O为坐标原点,T为直线
上任意一点,过F作TF的垂线交椭圆C于点P,Q.当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
经过点
,其离心率
.
(1)求椭圆
的方程;
(2)过坐标原点
作不与坐标轴重合的直线
交椭圆
于
两点,过
作
轴的垂线,垂足为
,连接
并延长交椭圆
于点
,试判断随着
的转动,直线
与
的斜率的乘积是否为定值?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com