【题目】已知椭圆
的右焦点为
,设直线
与
轴的交点为
,过点
且斜率为
的直线
与椭圆交于
两点,
为线段
的中点.
![]()
(1)若直线
的倾斜角为
,求
的值;
(2)设直线
交直线
于点
,证明:直线
.
【答案】(1)
;(2)详见解析.
【解析】
试题分析:(1)设
,根据图形可知
,直线
的方程为
,代入椭圆方程得到根与系数的关系,
,这样可求得三角形的面积;(2)设直线
的方程为
与椭圆方程联立,得到根与系数的关系,再根据
三点共线,那么
,得到坐标间的关系,若
,即说明
.
试题解析:由题意,知
,.........1分
(1)∵直线
的倾斜角为
,∴
.........................1分
∴直线
的方程为
......................2分
代入椭圆方程,可得
.
设
.∴
........................4分
∴
............6分
(2)设直线
的方程为
.
代入椭圆方程,得
.
设
,则
...............8分
设
,∵
三点共线,
∴有
,∴
...........................9分
而![]()
...................11分
∴直线
轴,即
..............................12分
科目:高中数学 来源: 题型:
【题目】小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为
A. 60 B. 72 C. 84 D. 96
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,设椭圆
的左焦点为
,短轴的两个端点分别为
,且
,点
在
上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若直线
与椭圆
和圆
分别相切于
,
两点,当
面积取得最大值时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,且过点
,若点
在椭圆C上,则点
称为点M的一个“椭点”.
(1)求椭圆C的标准方程;
(2)若直线
与椭圆C相交于A,B两点,且A,B两点的“椭点”分别为P,Q,以PQ为直径的圆经过坐标原点,试判断
的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国上是世界严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准
(吨),用水量不超过
的部分按平价收费,超过
的部分按议价收费,为了了解全市民月用水量的分布情况,通过抽样,获得了100位居民某年的月用水量(单位:吨),将数据按照
,
,…,
分成9组,制成了如图所示的频率分布直方图.
![]()
(Ⅰ)求直方图中
的值;
(Ⅱ)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(Ⅲ)若该市政府希望使
的居民每月的用水量不超过标准
(吨),估计
的值,并说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
过点
,
是该椭圆的左、右焦点,
是上顶点,且
是等腰直角三角形.
(1)求
的方程;
(2)已知
是坐标原点,直线
与椭圆
相交于
两点,点
在
上且满足四边形
是一个平行四边形,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某度假酒店为了解会员对酒店的满意度,从中抽取50名会员进行调查,把会员对酒店的“住宿满意度”与“餐饮满意度”都分为五个评分标准:1分(很不满意);2分(不满意);3分(一般);4分(满意);5分(很满意).其统计结果如下表(住宿满意度为
,餐饮满意度为
)
![]()
(1)求“住宿满意度”分数的平均数;
(2)求“住宿满意度”为3分时的5个“餐饮满意度”人数的方差;
(3)为提高对酒店的满意度,现从
且
的会员中随机抽取2人征求意见,求至少有1人的“住宿满意度”为2的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《山东省高考改革试点方案》规定:从
年高考开始,高考物理、化学等六门选考科目的考生原始成绩从高到低划分为
八个等级.参照正态分布原则,确定各等级人数所占比例分别为
.选考科目成绩计入考生总成绩时,将
至
等级内的考生原始成绩,依照等比例转换法则分别转换到![]()
八个分数区间,得到考生的等级成绩.
![]()
某校
级学生共
人,以期末考试成绩为原始成绩转换了本校的等级成绩,为学生合理选科提供依据,其中物理成绩获得等级
的学生原始成绩统计如下
成绩 | 93 | 91 | 90 | 88 | 87 | 86 | 85 | 84 | 83 | 82 |
人数 | 1 | 1 | 4 | 2 | 4 | 3 | 3 | 3 | 2 | 7 |
(1)从物理成绩获得等级
的学生中任取
名,求恰好有
名同学的等级分数不小于
的概率;
(2)待到本级学生高考结束后,从全省考生中不放回的随机抽取学生,直到抽到
名同学的物理高考成绩等级为
或
结束(最多抽取
人),设抽取的学生个数为
,求随机变量
的数学期望(注:
).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com