【题目】(本小题满分
分)已知圆
有以下性质:
①过圆
上一点
的圆的切线方程是
.
②若
为圆
外一点,过
作圆
的两条切线,切点分别为
,则直线
的方程为
.
③若不在坐标轴上的点
为圆
外一点,过
作圆
的两条切线,切点分别为
,则
垂直
,即
,且
平分线段
.
(1)类比上述有关结论,猜想过椭圆
上一点
的切线方程(不要求证明);
(2)过椭圆
外一点
作两直线,与椭圆相切于
两点,求过
两点的直线方程;
(3)若过椭圆
外一点
(
不在坐标轴上)作两直线,与椭圆相切于
两点,求证:
为定值,且
平分线段
.
【答案】(1)![]()
(2)![]()
(3)见解析.
【解析】分析:(1)根据类比推理可得结论.(2)设
,结合(1)可得过点
的切线方程,根据两切线都过点
可得
和
,再结合过两点的直线唯一的特点可得直线
的方程是
.(3)先由直线
的方程可得
,又
,所以
.令线段
的中点为
,由点差法得
,于是
,故
,所以
三点共线,从而得到
平分线段
.
详解:(1)过椭圆
上一点
的切线方程是
.
(2)设
.
由(1)得过椭圆上点
的切线
的方程是
,
∵直线
过点
,
∴
,
同理
.
又过两点A,B的直线是唯一的,
∴直线
的方程是
.
(3)由(2)知过
两点的直线方程是
,
∴
,
又
,
∴
为定值.
设
线段
的中点为
,则
.
∵点
均在椭圆上,
∴
①,
②
②-①得
,
即
,
∴
,
又![]()
∴
,
又
,
∴
,
∴
三点共线,
∴
平分线段
.
科目:高中数学 来源: 题型:
【题目】某食品厂为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本称出它们的质量(单位:克),质量值落在
的产品为合格品,否则为不合格品.如表是甲流水线样本频数分布表,如图是乙流水线样本的频率分布直方图.
产品质量/克 | 频数 |
(490,495] | 6 |
(495,500] | 8 |
(500,505] | 14 |
(505,510] | 8 |
(510,515] | 4 |
![]()
甲流水线样本频数分布表:
甲流水线 | 乙流水线 | 总计 | |
合格品 |
|
| |
不合格品 |
|
| |
总计 |
|
(1)根据上表数据作出甲流水线样本的频率分布直方图;
(2)若以频率作为概率,试估计从乙流水线任取
件产品,该产品恰好是合格品的概率;
(3)由以上统计数据完成下面
列联表,能否在犯错误的概率不超过
的前提下认为产品的包装质量与两条自动包装流水线的选择有关?
附表:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(参考公式:
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正整数数列中,由1开始依次按如下规则取它的项:第一次取1;第二次取2个连续偶数2,4;第三次取3个连续奇数5,7,9;第四次取4个连续偶数10,12,14,16;第五次取5个连续奇数17,19,21,23,25,按此规律取下去,得到一个子数列1,2,4,5,7,9,10,12,14,16,17,19…,则在这个子数中第2014个数是( )
A. 3965 B. 3966 C. 3968 D. 3989
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在公比为2的等比数列{an}中,a2与a3的等差中项是9
.
(1)求a1的值;
(2)若函数y=|a1|sin(
x+φ),|φ|<π,的一部分图象如图所示,M(﹣1,|a1|),N(3,﹣|a1|)为图象上的两点,设∠MPN=β,其中P与坐标原点O重合,0<β<π,求tan(φ﹣β)的值. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣x2﹣ax.
(1)若曲线y=f(x)在点x=0处的切线斜率为1,求函数f(x)在[0,1]上的最值;
(2)令g(x)=f(x)+
(x2﹣a2),若x≥0时,g(x)≥0恒成立,求实数a的取值范围;
(3)当a=0且x>0时,证明f(x)﹣ex≥xlnx﹣x2﹣x+1.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com