精英家教网 > 高中数学 > 题目详情

【题目】如图,在三角形中,,平面与半圆弧所在的平面垂直,点为半圆弧上异于的动点,的中点.

1)求证:

2)当三棱锥体积最大时,求锐二面角的余弦值.

【答案】1)证明见解析;(2.

【解析】

1)根据平面与平面垂直的性质,可得;圆的性质,易得,利用直线与平面垂直的判定可知平面,即可证明.

2)根据题意,可知三棱锥体积最大时,处在半圆弧的中点.建立空间直角坐标系.求得平面与平面的法向量,利用法向量即可求得二面角夹角的余弦值.

1)证明:因为平面与半圆所在的平面垂直,交线为,,

所以垂直于半圆所在平面,

在半圆面内,,

为直径,为半圆弧上一点,,

,因此平面,

平面,所以

2

三棱锥体积最大时,处在半圆弧的中点,

建立如图所示空间直角坐标系,由题意知,

,

设平面的一个法向得为,

,

,,

,

设平面的一个法向量为,,

,,,

,

此时

由图可知,二面角为锐二面角

所以二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱的所有棱长相等,的中点.

(1)求证:平面

2)当的中点时,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面为等边三角形,分别为的中点.

1)求证:平面

2)求直线和平面所成角的正切值;

3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知倾斜角为的直线过点,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.曲线的极坐标方程为,直线与曲线分别交于两点.

1)写出直线的参数方程和曲线的直角坐标方程;

2)若,求直线的斜率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中《方田》章有弧田面积计算问题,计算术曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面积计算公式为:弧田面积(弦乘矢+矢乘矢),弧田是由圆弧(简称为弧田的弧)和以圆弧的端点为端点的线段(简称 (弧田的弦)围成的平面图形,公式中指的是弧田的弦长,等于弧田的弧所在圆的半径与圆心到弧田的弦的距离之差.现有一弧田,其弦长等于,其弧所在圆为圆,若用上述弧田面积计算公式计算得该弧田的面积为,则

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C1a0b0)的左右焦点为F1F2过点F1的直线l与双曲线C的左支交于AB两点,BF1F2的面积是AF1F2面积的三倍,∠F1AF290°,则双曲线C的离心率为(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某工厂每天固定成本是4万元,每生产一件产品成本增加100元,工厂每件产品的出厂价定为元时,生产件产品的销售收入是(元),为每天生产件产品的平均利润(平均利润=总利润/总产量).销售商从工厂每件元进货后又以每件元销售, ,其中为最高限价 为销售乐观系数,据市场调查, 是由当 的比例中项时来确定.

(1)每天生产量为多少时,平均利润取得最大值?并求的最大值;

(2)求乐观系数的值;

(3)若,当厂家平均利润最大时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《汉字听写大会》不断创收视新高,为了避免书写危机,弘扬传统文化,某市大约10万名市民进行了汉字听写测试.现从某社区居民中随机抽取50名市民的听写测试情况,发现被测试市民正确书写汉字的个数全部在160184之间,将测试结果按如下方式分成六组:第1,第2,第6,如图是按上述分组方法得到的频率分布直方图.

1)若电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第2组或第6组的概率;

2)试估计该市市民正确书写汉字的个数的众数与中位数;

3)已知第4组市民中有3名男性,组织方要从第4组中随机抽取2名市同组成弘扬传统文化宣传队,求至少有1名女性市民的概率.

查看答案和解析>>

同步练习册答案