【题目】已知椭圆的焦点坐标为
,
,过
垂直于长轴的直线交椭圆于
、
两点,且
.
![]()
(Ⅰ)求椭圆的方程;
(Ⅱ)过
的直线
与椭圆交于不同的两点
、
,则
的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由.
【答案】(1)
;(2)存在,
内切圆面积最大值是
,直线方程为
.
【解析】
(1)设椭圆方程为
=1(a>b>0),
由焦点坐标可得c=1.由|PQ|=3,可得
=3.
又a2-b2=1,得a=2,b=
.故椭圆方程为
=1.
(2)设M(x1,y1),N(x2,y2),不妨令y1>0,y2<0,
设△F1MN的内切圆的半径R,
则△F1MN的周长为4a=8,S△F1MN=
(|MN|+|F1M|+|F1N|)R=4R,
因此要使△F1MN内切圆的面积最大,则R最大,此时S△F1MN也最大.
S△F1MN=
F1F2||y1-y2|=y1-y2,
由题知,直线l的斜率不为零,可设直线l的方程为x=my+1,
由
得(3m2+4)y2+6my-9=0,
得y1=
,y2=
,
则S△F1MN=y1-y2=
,令t=
,则t≥1,
则S△F1MN=
=
=
.令f(t)=3t+
,则f′(t)=3-
,
当t≥1时,f′(t)>0,所以f(t)在[1,+∞)上单调递增,
有f(t)≥f(1)=4,S△F1MN≤
=3,
当t=1,m=0时,S△F1MN=3,又S△F1MN=4R,∴Rmax=![]()
这时所求内切圆面积的最大值为
π.
故△F1MN内切圆面积的最大值为
π,且此时直线l的方程为x=1.
科目:高中数学 来源: 题型:
【题目】选修4﹣4:坐标系与参数方程
在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),(
),圆C的参数方程
(θ为参数).
(Ⅰ)设P为线段MN的中点,求直线OP的平面直角坐标方程;
(Ⅱ)判断直线l与圆C的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设D是函数y=f(x)定义域内的一个区间,若存在x0∈D,使f(x0)=﹣x0 , 则称x0是f(x)的一个“次不动点”,也称f(x)在区间D上存在次不动点.若函数f(x)=ax2﹣3x﹣a+
在区间[1,4]上存在次不动点,则实数a的取值范围是( )
A.(﹣∞,0)
B.(0,
)
C.[
,+∞)
D.(﹣∞,
]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+
|﹣|x﹣
|;
(1)作出函数f(x)的图象;
(2)根据(1)所得图象,填写下面的表格:
性质 | 定义域 | 值域 | 单调性 | 奇偶性 | 零点 |
f(x) |
(3)关于x的方程f2(x)+m|f(x)|+n=0(m,n∈R)恰有6个不同的实数解,求n的取值范围. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sinxcos(x﹣
)+cos2x﹣
.
(1)求函数f(x)的最大值,并写出f(x)取最大值x时的取值集合;
(2)若f(x0)=
,x0∈[
,
],求cos2x0的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a>0且a≠1,设命题p:函数y=loga(x-1)在(1,+∞)上单调递减,命题q:曲线y=x2+(a-2)x+4与x轴交于不同的两点.若“
p且q”为真命题,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x+1|+|x﹣4|﹣a.
(1)当a=1时,求函数f(x)的最小值;
(2)若f(x)≥
+1对任意的实数x恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱
中,侧棱垂直于底面,
,
为
的中点,过
的平面与
交于点
.
![]()
(1)求证:点
为
的中点;
(2)四边形
是什么平面图形?说明理由,并求其面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com