【题目】解关于x的不等式![]()
【答案】见解析
【解析】
根据a的范围,分a等于0和a大于0两种情况考虑:当
时,把
代入不等式得到一个一元一次不等式,求出不等式的解集;当a大于0时,把原不等式的左边分解因式,再根据a大于1,
及a大于0小于1分三种情况取解集,当a大于1时,根据
小于1,利用不等式取解集的方法求出解集;当
时,根据完全平方式大于0,得到x不等于1;当a大于0小于1时,根据
大于1,利用不等式取解集的方法即可求出解集,综上,写出a不同取值时,各自的解集即可.
当
时,不等式化为
,
;
当
时,原不等式化为
,
当
时,不等式的解为
或
;
当
时,不等式的解为
;
当
时,不等式的解为
或
;
综上所述,得原不等式的解集为:
当
时,解集为
;当
时,解集为
或
;
当
时,解集为
;当
时,解集为
或
.
科目:高中数学 来源: 题型:
【题目】下表提供了工厂技术改造后某种型号设备的使用年限x和所支出的维修费y(万元)的几组对照数据:
x(年) | 2 | 3 | 4 | 5 | 6 |
y(万元) | 1 | 2.5 | 3 | 4 | 4.5 |
(1)若知道y对x呈线性相关关系,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
;
(2)已知该工厂技术改造前该型号设备使用10年的维修费用为9万元,试根据(1)求出的线性回归方程,预测该型号设备技术改造后,使用10年的维修费用能否比技术改造前降低?参考公式:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
称为
,
的二维平方平均数,
称为
,
的二维算术平均数,
称为
,
的二维几何平均数,
称为
,
的二维调和平均数,其中
,
均为正数.
(1)试判断
与
的大小,并证明你的猜想.
(2)令
,
,试判断
与
的大小,并证明你的猜想.
(3)令
,
,
,试判断
、
、
三者之间的大小关系,并证明你的猜想.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于数集
,其中
,
,定义向量集
.若对于任意
,使得
,则称
具有性质
.例如
具有性质
.
(
)若
,且
具有性质
,求
的值.
(
)若
具有性质
,求证:
,且当
时,
.
(
)若
具有性质
,且
,
(
为常数),求有穷数列
,
,
,
的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某玩具所需成本费用为P元,且P=1 000+5x+
x2,而每套售出的价格为Q元,其中Q(x)=a+
(a,b∈R),
(1)问:玩具厂生产多少套时,使得每套所需成本费用最少?
(2)若生产出的玩具能全部售出,且当产量为150套时利润最大,此时每套价格为30元,求a,b的值.(利润=销售收入-成本).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆E经过M(﹣1,0),N(0,1),P(
,
)三点.
(1)求圆E的方程;
(2)若过点C(2,2)作圆E的两条切线,切点分别是A,B,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年2月25日,平昌冬奥会闭幕式上的“北京8分钟”惊艳了世界。我们学校为了让我们更好的了解奥运,了解新时代祖国的科技发展,在高二年级举办了一次知识问答比赛。比赛共设三关,第一、二关各有两个问题,两个问题全答对,可进入下一关;第三关有三个问题,只要答对其中两个问题,则闯关成功。每过一关可一次性获得分别为1、2、3分的积分奖励,高二、一班对三关中每个问题回答正确的概率依次为
,且每个问题回答正确与否相互独立.
(1)记
表示事件“高二、一班未闯到第三关”,求
的值;
(2)记
表示高二、一班所获得的积分总数,求
的分布列和期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com