【题目】已知函数
,
,
(1)当
时,求曲线
在点
处的切线方程;
(2)讨论函数
的单调性并判断有无极值,有极值时求出极值.
【答案】(1)
;(2)见解析.
【解析】试题分析:(1)欲求曲线
在点
处的切线方程,只需求出斜率
和和
的值,即可利用直线的点斜式方程求解切线的方程;
(2)求出
,通过讨论
的取值范围,求出函数的单调区间,从而求出函数的极值即可,可分
两种情况,求出函数的单调区间,得出函数的极值.
试题解析:
(1)
时,
,![]()
所以
,![]()
因此曲线
在点
处的切线方程是![]()
即![]()
(2)
![]()
①当
时,
恒成立,
所以当
时
,
单调递减
当
时,
,
单调递增
所以当
时,
取极小值![]()
②当
时,由
得
或![]()
(ⅰ)当
,即
时
由
得
或![]()
由
得![]()
所以
在
上单调递增,在
上单调递减,在
上单调递增,故
时,
取极大值
,
时,
取极小值![]()
(ⅱ)当
,即
时,
恒成立
此时函数
在
上单调递增,函数
无极值
(ⅲ)当
,即
时
由
得
或![]()
由
得![]()
所以
在
上单调递增,在
上单调递减,在
上单调递增,故
时,
取极大值![]()
时,
取极小值
.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线
的极坐标方程是
,以极点为原点,极轴为
轴的正半轴建立平面直角坐标系,直线
的参数方程为
(
为参数).
(Ⅰ)写出直线
的普通方程与曲线
的直角坐标方程;
(Ⅱ)设曲线
经过伸缩变换
得到曲线
,若点
,直线
与
交与
,
,求
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】上周某校高三年级学生参加了数学测试,年部组织任课教师对这次考试进行成绩分析.现从中随机选取了40名学生的成绩作为样本,已知这40名学生的成绩全部在40分至100分之间(满分100分,成绩不低于40分),现将成绩按如下方式分成6组:第一组
;第二组
;……;第六组
,并据此绘制了如图所示的频率分布直方图.
(Ⅰ)估计这次月考数学成绩的平均分和众数;
(Ⅱ)从成绩大于等于80分的学生中随机选2名,求至少有1名学生的成绩在区间
内的概率.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,现提供
的大致图象的8个选项:
![]()
(1)请你作出选择,你选的是( );
(2)对于函数图像的判断,往往只需了解函数的基本性质.为了验证你的选择的正确性,请你解决
下列问题:
①
的定义域是___________________;
②就奇偶性而言,
是______________________ ;
③当
时,
的符号为正还是负?并证明你的结论.
(解决了上述三个问题,你要调整你的选项,还来得及.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】张师傅想要一个如图1所示的钢筋支架的组合体,来到一家钢制品加工店定制,拿出自己画的组合体三视图(如图2所示).店老板看了三视图,报了最低价,张师傅觉得很便宜,当即甩下定金和三视图,约定第二天提货.第二天提货时,店老板一脸坏笑的捧出如图3–1所示的组合体,张师傅一看,脸都绿了:“奸商,怎能如此偷工减料”.店老板说,我是按你的三视图做的,要不我给你加一个正方体,但要加价,随机加上了一个正方体,得到如图3–2所示的组合体;张师傅脸还是绿的,店老板又加上一个正方体,组成了如图 3–3 所示的组合体,又加价;张师傅脸继续绿,店老板再加一个正方体,组成如图 3–4 所示的组合体,再次加价;双方就三视图争吵不休……
![]()
![]()
![]()
你认为店老板提供的
个组合体的三视图与张师傅画的三视图一致的个数是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位实行休年假制度三年以来,50名职工休年假的次数进行的调查统计结果如下表所示:
休假次数 | 0 | 1 | 2 | 3 |
人数 | 5 | 10 | 20 | 15 |
根据表中信息解答以下问题:
(1)从该单位任选两名职工,求这两人休年假次数之和为4的概率;
(2)从该单位任选两名职工,用
表示这两人休年假次数之差的绝对值,求随机变量
的分布列及数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
,椭圆
的离心率为
是椭圆的焦点,直线
的斜率为
为坐标原点.
(1)求椭圆
的方程;
(2)设过点
的直线
与椭圆
相交于
两点,当
的面积最大时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
).
(1)若曲线
在点
处的切线经过点
,求
的值;
(2)若
在区间
上存在极值点,判断该极值点是极大值点还是极小值点,并求
的取值范围;
(3)若当
时,
恒成立,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com