精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若,则当时,讨论的单调性;

(2)若,且当时,不等式在区间上有解,求实数的取值范围.

【答案】(1)答案见解析;(2).

【解析】试题分析:

(1)函数的定义域为分类讨论可得:

时,内单调递减;

时,上单调递减,在上单调递增;

时,上单调递减,在上单调递增.

(2)原问题等价于当时,在区间上的最大值

,则.分类讨论两种情况可得据此求解关于实数a的不等式可得实数的取值范围是

试题解析:

(1)函数的定义域为,由

所以

时,内单调递减;

时,

所以,上单调递减,在上单调递增;

时,

所以,上单调递减,在上单调递增.

(2)由题意,当时,在区间上的最大值

时,

.

①当时,

上单调递增,

②当时,设的两根分别为

,所以在

上单调递增,

综上,当时,在区间上的最大值

解得,所以实数的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)将的方程化为普通方程,将的方程化为直角坐标方程;

(Ⅱ)已知直线的参数方程为为参数,且交于点交于点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】树立和践行绿水青山就是金山银山,坚持人与自然和谐共生的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,大量的统计数据表明,参与调查者中关注此问题的约占80%.现从参与调查的人群中随机选出人,并将这人按年龄分组:第1,第2,第3,第4,第5,得到的频率分布直方图如图所示:

1)求的值;

2)求出样本的平均数(同一组数据用该区间的中点值作代表);

3)现在要从年龄较小的第12组中用分层抽样的方法抽取人,再从这人中随机抽取人进行问卷调查,求第2组中抽到人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心为的圆,满足下列条件:圆心位于轴正半轴上,与直线相切且被轴截得的弦长为,圆的面积小于13.

(Ⅰ)求圆的标准方程;

(Ⅱ)设过点的直线与圆交于不同的两点,以为邻边作平行四边形.是否存在这样的直线,使得直线恰好平行?如果存在,求出的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种商品价格与该商品日需求量之间的几组对照数据如下表:

(1)y关于x的线性回归方程;

(2)利用(1)中的回归方程当价格x=40/kg日需求量y的预测值为多少?

参考公式:线性回归方程其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.

(1)求直方图的的值;

(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由.

(3)估计居民月用水量的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,令.

(1)当时,求函数的单调区间及极值;

(2)若关于的不等式恒成立,求整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2013年春节,有超过20万名广西、四川等省籍的外来务工人员选择驾驶摩托车沿321国道返乡过年,为保证他们的安全,交管部门在321国道沿线设立多个驾乘人员休息站,交警小李在某休息站连续5天对进站休息的驾驶人员每隔50辆摩托车,就进行省籍询问一次,询问结果如下图所示.

(Ⅰ)问交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法?

(Ⅱ)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的有5名,则四川籍的应抽取几名?

(Ⅲ)在上述抽出的驾驶人员中任取2名,求至少有一名驾驶人员是广西籍的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某公司为郑州园博园生产某特许商品,该公司年固定成本为10万元,每生产千件需另投入2 .7万元,设该公司年内共生产该特许商品工x千件并全部销售完;每千件的销售收入为R(x)万元,

(I)写出年利润W(万元〉关于该特许商品x(千件)的函数解析式;

〔II〕年产量为多少千件时,该公司在该特许商品的生产中所获年利润最大?

查看答案和解析>>

同步练习册答案