【题目】已知椭圆
的一个顶点为抛物线
的焦点,点
在椭圆
上且
,
关于原点
的对称点为
,过
作
的垂线交椭圆于另一点
,连
交
轴于
.
(1)求椭圆
的方程;
(2)求证:
轴;
(3)记
的面积为
的面积为
,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,抛物线
的焦点为
,抛物线上一定点
.
![]()
(1)求抛物线
的方程及准线
的方程;
(2)过焦点
的直线(不经过
点)与抛物线交于
两点,与准线
交于点
,记
的斜率分别为
,问是否存在常数
,使得
成立?若存在
,求出
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种汽车购买时费用为14.4万元,每年应交付保险费、养路费及汽油费共0.9万元,汽车的维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,……,依等差数列逐年递增.
(Ⅰ)设使用n年该车的总费用(包括购车费用)为f(n),试写出f(n)的表达式;
(Ⅱ)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
,直线
交
于
两点,
是
的中点,过
作
轴的垂线交
于
点.
![]()
(1)证明:抛物线
在
点处的切线与
平行;
(2)是否存在实数
,使以
为直径的圆
经过
点?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,
是椭圆的左、右焦点,过
作直线
交椭圆于
两点,若
的周长为8.
![]()
(1)求椭圆方程;
(2)若直线
的斜率不为0,且它的中垂线与
轴交于
点,求
点的纵坐标的范围;
(3)是否在
轴上存在点
,使得
轴平分
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解春季昼夜温差大小与某种子发芽多少之间的关系,分别记录了4月1日至4月5日每天的昼夜温差与每天100颗种子浸泡后的发芽数,得到如下表格:
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 |
温差 | 12 | 11 | 13 | 10 | 8 |
发芽率 | 26 | 25 | 30 | 23 | 16 |
(1)从这5天中任选2天,求至少有一天种子发芽数超过25颗的概率;
(2)请根据4月1日、4月2日、4月3日这3天的数据,求出
关于
的线性回归方程
;
(3)根据(2)中所得的线性回归方程,预测温差为
时,种子发芽的颗数.
参考公式:
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】交通指数是指交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指数值,记交通指数为
,其范围为
,分别有五个级别:
,畅通;
,基本畅通;
,轻度拥堵;
,中度拥堵;
,严重拥堵.在晚高峰时段(
),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的频率分布直方图如图所示.
![]()
(1)求出轻度拥堵、中度拥堵、严重拥堵的路段的个数;
(2)用分层抽样的方法从轻度拥堵、中度拥堵、严重拥堵的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;
(3)从(2)中抽取的6个路段中任取2个,求至少有1个路段为轻度拥堵的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com