【题目】已知曲线
的参数方程为
(
为参数),直线
的参数方程为
(
为参数).
(Ⅰ)求曲线
和直线
的普通方程;
(Ⅱ)若点
为曲线
上一点,求点
到直线
的距离的最大值.
科目:高中数学 来源: 题型:
【题目】函数f(x)=3x-x3在区间(a2-12,a)上有最小值,则实数a的取值范围是( )
A.(-1,3)
B.(-1,2)
C.(-1,3]
D.(-1,2]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据国家环保部新修订的《环境空气质量标准》规定:居民区
的年平均浓度不得超过3S微克/立方米,
的24小时平均浓度不得超过75微克/立方米.某市环保局随机抽取了一居民区2016年20天
的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如图表:
组别 |
| 频数(天) | 频率 |
第一组 |
| 3 | 0.15 |
第二组 |
| 12 | 0.6 |
第三组 |
| 3 | 0.15 |
第四组 |
| 2 | 0.1 |
(Ⅰ)将这20天的测量结果按表中分组方法绘制成的样本频率分布直方图如图.
(ⅰ)求图中
的值;
(ⅱ)在频率分布直方图中估算样本平均数,并根据样本估计总体的思想,从
的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.
(Ⅱ)将频率视为概率,对于2016年的某3天,记这3天中该居民区
的24小时平均浓度符合环境空气质量标准的天数为
,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的最小正周期为
,将函数
的图象向左平移
个单位长度,再向下平移
个单位长度,得到函数
的图象.
(Ⅰ)求函数
的单调递增区间;
(Ⅱ)在锐角
中,角
的对边分别为
.若
,
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
)在同一半周期内的图象过点
,
,
,其中
为坐标原点,
为函数
图象的最高点,
为函数
的图象与
轴的正半轴的交点,
为等腰直角三角形.![]()
(1)求
的值;
(2)将
绕原点
按逆时针方向旋转角
,得到
,若点
恰好落在曲线
(
)上(如图所示),试判断点
是否也落在曲线
(
)上,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在矩形
中,点
在线段
上,
,
,沿直线
将
翻折成
,使点
在平面
上的射影
落在直线
上.
(Ⅰ)求证:直线
平面
;
(Ⅱ)求二面角
的平面角的余弦值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:①已知
,“
且
”是“
”的充分条件;
②已知平面向量
,
是“
”的必要不充分条件;
③已知
,“
”是“
”的充分不必要条件;
④命题
“
,使
且
”的否定为
“
,都有
且
”.其中正确命题的个数是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com