精英家教网 > 高中数学 > 题目详情
如图,正方体ABCD-A1B1C1D1的棱长为2,E为棱DD1的中点.
(Ⅰ)判断BD1和过A,C,E三点的平面的位置关系,并证明你的结论;
(II)求△ACE的面积.
分析:(Ⅰ)利用线面平行的判定定理即可证明;
(Ⅱ)先说明EO是三角形边AC上的高,进而利用三角形的面积公式计算即可.
解答:解:(Ⅰ)BD1∥平面ACE.
下面证明:如图所示,连接BD与AC相较于点O,连接EO.
∵DO=OB,DE=ED1
∴EO∥BD1
∵EO?平面ACE,BD1?平面ACE,
∴BD1∥平面ACE.
(Ⅱ)∵正方体ABCD-A1B1C1D1的棱长为2,
∴AC=2
2
EO=
ED2+DO2
=
12+(
2
)2
=
3

∵EA=EC,AO=OC,∴EO⊥AC.
S△ACE=
1
2
×AC×EO
=
1
2
×2
2
×
3
=
6
点评:熟练掌握线面平行的判定定理是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为a,它的各个顶点都在球O的球面上,问球O的表面积.
(1) 如果球O和这个正方体的六个面都相切,则有S=
 

(2)如果球O和这个正方体的各条棱都相切,则有S=
 

精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,E,F分别为BB1和A1D1的中点.证明:向量
A1B
B1C
EF
是共面向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1棱长为8,E、F分别为AD1,CD1中点,G、H分别为棱DA,DC上动点,且EH⊥FG.
(1)求GH长的取值范围;
(2)当GH取得最小值时,求证:EH与FG共面;并求出此时EH与FG的交点P到直线B1B的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,若E、F、G分别为棱BC、C1C、B1C1的中点,O1、O2分别为四边形ADD1A1、A1B1C1D1的中心,则下列各组中的四个点不在同一个平面上的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正方体ABCD-A1B1C1D1中,E、F、G、H分别是所在棱的三等分点,且BF=DE=C1G=C1H=
13
AB

(1)证明:直线EH与FG共面;
(2)若正方体的棱长为3,求几何体GHC1-EFC的体积.

查看答案和解析>>

同步练习册答案