(本小题满分12分)已知函数
,其中
.
(Ⅰ)若
是
的极值点,求
的值;
(Ⅱ)求
的单调区间;
(Ⅲ)若
在
上的最大值是
,求
的取值范围 .
(Ⅰ)
时,符合题意.
(Ⅱ)综上,当
时,
的增区间是
,减区间是
;
当
时,
的增区间是
,减区间是
和
;
当
时,
的减区间是
;
当
时,
的增区间是
;减区间是
和
.
(Ⅲ)
在
上的最大值是
时,
的取值范围是
.
【解析】本试题主要是考查了导数在研究函数中的运用。根据导数的符号判定函数的单调性和最值问题。
(1)
. 依题意,令
,解得
.
(2)对于参数a进行分类讨论得到不同情况下的单调性质的证明
(3)在第二问的基础上,根据单调性得到最值。
(Ⅰ)解:
. 依题意,令
,解得
. 经检验,
时,符合题意.
……4分
(Ⅱ)解:① 当
时,
.
故
的单调增区间是
;单调减区间是
.
② 当
时,令
,得
,或
.
当
时,
与
的情况如下:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
↘ |
|
↗ |
|
↘ |
所以,
的单调增区间是
;单调减区间是
和
.
当
时,
的单调减区间是
.
当
时,
,
与
的情况如下:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
↘ |
|
↗ |
|
↘ |
所以,
的单调增区间是
;单调减区间是
和
.
③ 当
时,
的单调增区间是
;单调减区间是
.
综上,当
时,
的增区间是
,减区间是
;
当
时,
的增区间是
,减区间是
和
;
当
时,
的减区间是
;
当
时,
的增区间是
;减区间是
和
. ……10分
(Ⅲ)由(Ⅱ)知
时,
在
上单调递增,由
,知不合题意.
当
时,
在
的最大值是
,
由
,知不合题意.
当
时,
在
单调递减,
可得
在
上的最大值是
,符合题意.
所以,
在
上的最大值是
时,
的取值范围是
. …………12分
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com