【题目】已知全集U={R},集合A={x|log2(3﹣x)≤2},集合B=
.
(1)求A,B;
(2)求(CUA)∩B.
【答案】
(1)解:由已知得:log2(3﹣x)≤log24,∴
解得﹣1≤x<3,∴A={x|﹣1≤x<3}.
=x|﹣2<x≤3
∴B={x|﹣2<x≤3}
(2)解:由(I)可得CUA={x|x<﹣1或x≥3}.
故(CUA)∩B={x|﹣2<x<﹣1或x=3}
【解析】(1)通过解对数不等式化简集合A,通过解分式不等式化简集合B.(2)利用补集的定义求出集合A的补集;再利用交集的定义求出集合的交集.
【考点精析】本题主要考查了交、并、补集的混合运算的相关知识点,需要掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】函数y=x2﹣2x的定义域为{0,1,2,3},那么其值域为( )
A.{y|﹣1≤y≤3}
B.{y|0≤y≤3}
C.{0,1,2,3}
D.{﹣1,0,3}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合P={y|y=(
)x , x>0},Q={x|y=lg(2x﹣x2)},则(RP)∩Q为( )
A.[1,2)
B.(1,+∞)
C.[2,+∞)
D.[1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A={x|x2﹣2x﹣8<0},B={x|x2+2x﹣3>0},C={x|x2﹣3ax+2a2<0},
(1)求A∩B.
(2)试求实数a的取值范围,使C(A∩B).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛物线
的顶点为坐标原点O,焦点F在
轴正半轴上,准线
与圆
相切.
(Ⅰ)求抛物线
的方程;
(Ⅱ)已知直线
和抛物线
交于点
,命题
:“若直线
过定点(0,1),则
”,
请判断命题
的真假,并证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=ax﹣1(a>0,且a≠1).
(1)求f(2)+f(﹣2)的值;
(2)求f(x)的解析式;
(3)解关于x的不等式f(x)<4,结果用集合或区间表示.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若二次函数f(x)=x2+bx+c满足f(2)=f(﹣2),且函数的f(x)的一个根为1.
(1)求函数f(x)的解析式;
(2)对任意的x∈[
,+∞),方程4mf(x)+f(x﹣1)=4﹣4m有解,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com