【题目】已知函数
在定义域内有两个不同的极值点.
(1)求
的取值范围;
(2)设两个极值点分别为:
,
,证:
.
【答案】(1)
.(2)见解析
【解析】
(1)由题得
,令
,则函数
在定义域内有两个不同的极值点等价于
在区间
内至少有两个不同的零点,再利用导数得到
,解不等式即得解;
(2)分析得到要证:
,只需证明
,即证
,不妨设
,即证
,构造函数构造函数
,其中
,证明
即得证.
(1)由题意可知,
的定义域为
,
且
,
令
,
则函数
在定义域内有两个不同的极值点等价于
在区间
内至少有两个不同的零点.
由
可知,
当
时,
恒成立,即函数
在
上单调,不符合题意,舍去.
当
时,由
得,
,即函数
在区间
上单调递增;
由
得,
,即函数
在区间
上单调递减;
故要满足题意,必有
,解得
.
(2)证明:由(1)可知,
,
故要证
,
只需证明
,
即证
,不妨设
,即证
,
构造函数
,其中
,
由
,
所以函数
在区间
内单调递减,所以
得证.
即证
.
科目:高中数学 来源: 题型:
【题目】在三棱锥,
中,
平面
,
,
,
,
为
的中点,
为
的中点.
![]()
(1)证明:平面
平面
;
(2)在线段
上是否存在一点
,使
平面
?若存在,指出点
的位置并给出证明,若不存在,说明理由;
(3)若
,求二面角
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在衡阳市“创全国文明城市”(简称“创文”)活动中,市教育局对本市A,B,C,D四所高中学校按各校人数分层抽样,随机抽查了200人,将调查情况进行整理后制成下表:
学校 | A | B | C | D |
抽查人数 | 10 | 15 | 100 | 75 |
“创文”活动中参与的人数 | 9 | 10 | 80 | 49 |
![]()
假设每名高中学生是否参与“创文”活动是相互独立的
(1)若本市共8000名高中学生,估计C学校参与“创文”活动的人数;
(2)在上表中从A,B两校没有参与“创文”活动的同学中随机抽取2人,求恰好A,B两校各有1人没有参与“创文”活动的概率;
(3)在随机抽查的200名高中学生中,进行文明素养综合素质测评(满分为100分),得到如上的频率分布直方图,其中
.求a,b的值,并估计参与测评的学生得分的中位数.(计算结果保留两位小数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
是正方形,点
在以
为直径的半圆弧上(
不与
,
重合),
为线段
的中点,现将正方形
沿
折起,使得平面
平面
.
![]()
(1)证明:
平面
.
(2)若
,当三棱锥
的体积最大时,求
到平面
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年1月1日《天津日报》发表文章总结天津海河英才计划成果“厚植热土 让天下才天津用”——我市精细服务海河英才优化引才结构.“海河英才”行动计划,紧紧围绕“一基地三区”定位,聚焦战略性新兴产业人才需求,大力、大胆集聚人才.政策实施1年半以来,截至2019年11月30日,累计引进各类人才落户23.5万人.具体比例如图所示,新引进两院院士,长江学者,杰出青年科学基金获得者等顶尖领军人才112人.记者李军计划从人才库中随机选取一部分英才进行跟踪调查采访.
![]()
(1)李军抽取了8人其中学历型人才4人,技能型人才3人,资格型人才1人,周二和周五随机进行采访,每天4人(4人顺序任意),周五采访学历型人才人数不超过2人的概率;
(2)李军抽取不同类型的人才有不同的采访补贴,学历型人才500元/人,技能型人才400元/人,资格型人才600元/人,则创业型急需型人才最少补贴多少元/人使每名人才平均采访补贴费用大于等于500元/人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱柱ABC﹣A1B1C1中,E是棱AB的中点,动点F是侧面ACC1A1(包括边界)上一点,若EF//平面BCC1B1,则动点F的轨迹是( )
A.线段B.圆弧
C.椭圆的一部分D.抛物线的一部分
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体
中,P,Q,M,N,H,R是各条棱的中点.
![]()
①直线
平面
;②
;③P,Q,H,R四点共面;④
平面
.其中正确的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年底,武汉发生“新型冠状病毒”肺炎疫情,国家卫健委紧急部署,从多省调派医务工作者前去支援,正值农历春节举家团圆之际,他们成为“最美逆行者”.武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者疑似的新冠肺炎患者无法明确排除新冠肺炎的发热患者和确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户不漏一人.若在排查期间,某小区有5人被确认为“确诊患者的密切接触者”,现医护人员要对这5人随机进行逐一“核糖核酸”检测,只要出现一例阳性,则将该小区确定为“感染高危小区”.假设每人被确诊的概率均为
且相互独立,若当
时,至少检测了4人该小区被确定为“感染高危小区”的概率取得最大值,则
____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com