精英家教网 > 高中数学 > 题目详情

【题目】是自然对数的底数,,已知函数.

1)若函数有零点,求实数的取值范围;

2)对于,证明:时,.

【答案】12)证明见解析

【解析】

1)函数有零点等价于对应方程有实数解,进而分离参数,并通过构造函数,结合求导,利用函数的单调性来确定其最值,从而得以确定参数的范围;(2)通过所要证明的不等式的等价转化,转化为两个不等式问题,通过分类讨论分别加以证明,构造函数并求导,结合函数的单调性与最值来证明与转化.

1)由函数有零点知,方程有实数解,因为,所以.设

的取值范围转化为函数上的值域.

因为,所以当,函数上单调递增,,函数上单调递减,

故函数时,取得最大值

上,,所以函数上的值域为.当时,

所以函数上的值域为.

从而函数有零点时,实数的取值范围为

2可以转化为证明两个不等式②.

,所以

时,,函数上单调递减,当时,

,函数上单调递增.故函数时,取得最小值

,所以

得证

,有,当时,.函数上单调递减;当时,函数上单调递增.

故函数时,取得最小值

所以,得.(仅当时取等号)

又由为增函数,得②.

合并①②得证

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】三个几何体组合的正视图和侧视图均为如下图所示,则下列图中能作为俯视图的个数为( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线上的点到点的距离比到直线的距离小为坐标原点.

1)过点且倾斜角为的直线与曲线交于两点,求的面积;

2)设为曲线上任意一点,点,是否存在垂直于轴的直线,使得被以为直径的圆截得的弦长恒为定值?若存在,求出的方程和定值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 和点D(2,0),直线 与抛物线C交于不同两点AB,直线BD与抛物线C交于另一点E.给出以下判断:

①直线OB与直线OE的斜率乘积为-2 轴; ③以BE为直径的圆与抛物线准线相切;

其中,所有正确判断的序号是(

A.①②③B.①②C.①③D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C上每一点到直线l的距离比它到点的距离大1.

1)求曲线C的方程;

2)曲线C任意一点处的切线m(不含x轴)与直线相交于点M,与直线l相交于点N,证明:为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,且圆过椭圆的上,下顶点.

1)求椭圆的方程.

2)若直线的斜率为,且直线交椭圆两点,点关于点的对称点为,点是椭圆上一点,判断直线的斜率之和是否为定值,如果是,请求出此定值:如果不是,请说明理.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间如下:

组号

第一组

第二组

第三组

第四组

第五组

分组

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

(1)求图中a的值;

(2)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;

(3)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2,求其中恰有1人的分数不低于90分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为ABCD四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25/件,乙分厂加工成本费为20/.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:

甲分厂产品等级的频数分布表

等级

A

B

C

D

频数

40

20

20

20

乙分厂产品等级的频数分布表

等级

A

B

C

D

频数

28

17

34

21

1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;

2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点(f())处的切线与y轴垂直.

1)求b

2)若有一个绝对值不大于1的零点,证明:所有零点的绝对值都不大于1

查看答案和解析>>

同步练习册答案