【题目】中国古建筑中的窗饰是艺术和技术的统一体,给人于美的享受.如图(1)为一花窗;图(2)所示是一扇窗中的一格,呈长方形,长30 cm,宽26 cm,其内部窗芯(不含长方形边框)用一种条形木料做成,由两个菱形和六根支条构成,整个窗芯关于长方形边框的两条对称轴成轴对称.设菱形的两条对角线长分别为x cm和y cm,窗芯所需条形木料的长度之和为L.
![]()
(1)试用x,y表示L;
(2)如果要求六根支条的长度均不小于2 cm,每个菱形的面积为130 cm2,那么做这样一个窗芯至少需要多长的条形木料(不计榫卯及其它损耗)?
科目:高中数学 来源: 题型:
【题目】已知函数
的图象经过点
,且在区间
上单调递减,在
上单调递增.
(Ⅰ)证明
;
(Ⅱ)求
的解析式;
(Ⅲ)若对于任意的
,
,不等式
恒成立,试问:这样的
是否存在,若存在,请求出
的范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某市准备在道路EF的一侧修建一条运动比赛道,赛道的前一部分为曲线段FBC.该曲线段是函数
时的图象,且图象的最高点为B
赛道的中间部分为长
千米的直线跑道CD,且CD∥EF;赛道的后一部分是以
为圆心的一段圆弧DE.
![]()
(1)求
的值和∠DOE的大小;
(2)若要在圆弧赛道所对应的扇形ODE区域内建一个“矩形草坪”,矩形的一边在道路EF上,一个顶点在半径OD上,另外一个顶点P在圆弧DE上,求“矩形草坪”面积的最大值,并求此时P点的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的上下两个焦点分别为
,过点
与
轴垂直的直线交椭圆
于
两点,
的面积为
,椭圆
的离心率为
.
(1)求椭圆
的标准方程;
(2)已知
为坐标原点,直线
与
轴交于点
,与椭圆
交于
两个不同的点,若
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
及
.
(1)分别求
、
的定义域,并求
的值;
(2)求
的最小值并说明理由;
(3)若
,
,
,是否存在满足下列条件的正数
,使得对于任意的正数
,
、
、
都可以成为某个三角形三边的长?若存在,则求出
的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
,
.
(1)若函数f(x)在
处有极值,求函数f(x)的最大值;
(2)是否存在实数b,使得关于x的不等式
在
上恒成立?若存在,求出b的取值范围;若不存在,说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
中,
,且点
(
)在直线
上.
(1)求数列
的通项公式;
(2)对任意的
,将数列
落入区间
内的项的个数记为
,求
的通项公式;
(3)对于(2)中
,记
,数列
前
项和为
,求使等式
成立的所有正整数
、
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com