【题目】已知函数
.其中![]()
(1)当
时,求函数
的单调区间;
(2)若对于任意
,都有
恒成立,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】某工厂去年某产品的年产量为100万只,每只产品的销售价为10元,固定成本为8元
今年,工厂第一次投入100万元
科技成本
,并计划以后每年比上一年多投入100万元
科技成本
,预计产量年递增10万只,第
次投入后,每只产品的固定成本为
为常数,
且
,若产品销售价保持不变,第
次投入后的年利润为
万元.
(1)求
的值,并求出
的表达式;
(2)问从今年算起第几年利润最高?最高利润为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一列非零向量
满足:
(其中
是非零常数).
(1)求数列
的通项公式;
(2)求向量
与
夹角
的弧度数![]()
(3)当
时,把
中所有与
共线的向量按原来的顺序排成一列,记为
令![]()
为坐标原点,求点列
的极限点D的坐标.(注:若点
坐标为
且
则称点D
为点列
的极限点).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】摩拜单车和
小黄车等各种共享单车的普及给我们的生活带来了便利.已知某共享单车的收费标准是:每车使用不超过1小时(包含1小时)是免费的,超过1小时的部分每小时收费1元(不足1小时的部分按1小时计算,例如:骑行2.5小时收费2元).现有甲、乙两人各自使用该种共享单车一次.设甲、乙不超过1小时还车的概率分别为
1小时以上且不超过2小时还车的概率分别为
两人用车时间都不会超过3小时.
(Ⅰ)求甲乙两人所付的车费相同的概率;
(Ⅱ)设甲乙两人所付的车费之和为随机变量
求
的分布列及数学期望![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
过点
,且椭圆的离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)斜率为
的直线
交椭圆
于
,
两点,且
.若直线
上存在点P,使得
是以
为顶角的等腰直角三角形,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入
万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从
开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]
(1)根据频率分布直方图计算图中各小长方形的宽度;
(2)试估计该公司投入
万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入 | 1 | 2 | 3 | 4 | 5 |
销售收益 | 2 | 3 | 2 | 7 |
由表中的数据显示,
与
之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出
关于
的回归直线方程.
![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
点P是曲线C1:(x-2)2+y2=4上的动点,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,以极点O为中心,将点P逆时针旋转90°得到点Q,设点Q的轨迹为曲线C2.
(Ⅰ)求曲线C1,C2的极坐标方程;
(Ⅱ)射线
(ρ>0)与曲线C1,C2分别交于A,B两点,设定点M(2,0),求△MAB的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左右焦点为
,
是椭圆上半部分的动点,连接
和长轴的左右两个端点所得两直线交
正半轴于
两点(点
在
的上方或重合).
![]()
(1)当
面积
最大时,求椭圆的方程;
(2)当
时,在
轴上是否存在点
使得
为定值,若存在,求
点的坐标,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com