【题目】已知椭圆
:
,点
是椭圆
内且在
轴上的一个动点,过点
的直线与椭圆
交于
,
两点(
在第一象限),且
.
(Ⅰ)若点
为椭圆
的下顶点,求点
的坐标;
(Ⅱ)当
(
为坐标原点)的面积最大时,求点
的坐标.
科目:高中数学 来源: 题型:
【题目】过圆
:
上的点
作
轴的垂线,垂足为
,点
满足
.当
在
上运动时,记点
的轨迹为
.
(1)求
的方程;
(2)过点
的直线
与
交于
,
两点,与圆
交于
,
两点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图的程序框图中,若输入
,
,则输出的
值是( )
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/21/1907086498037760/1907898837975040/STEM/25d20caaa911497ea3baaf4f7dee45a3.png]
A. 3 B. 7 C. 11 D. 33
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
是定义在R上的奇函数,其中
为指数函数,且
的图象过定点
.
(1)求函数
的解析式;
(2)若关于x的方程,
有解,求实数a的取值范围;
(3)若对任意的
,不等式
恒成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产
(千部)手机,需另投入成本
万元,且
,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.
(
)求出2020年的利润
(万元)关于年产量
(千部)的函数关系式,(利润=销售额—成本);
2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2-ax-xln x,且f(x)≥0.
(1)求a;
(2)证明:f(x)存在唯一的极大值点x0,且e-2<f(x0)<2-2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com