【题目】已知圆
,点
,以线段
为直径的圆内切于圆
,记点
的轨迹为
.
![]()
(1)求曲线
的方程;
(2)直线
交圆
于
,
两点,当
为
的中点时,求直线
的方程.
【答案】(1)
;(2)
或
.
【解析】
试题本题主要考查椭圆的标准方程和几何性质、直线的标准方程和几何性质等基础知识,意在考查考生的分析问题解决问题的能力、读图能力、运算求解能力. 第一问,设AB的中点为M,切点为N,连OM,MN,先利用半径长得出|OM|+|MN|=2,再利用中位线转化边,得|AB|+|AB|=2(|OM|+|MN|)=4,得到椭圆的定义,从而得到a,b,c的值,写出椭圆的方程;第二问,利用OB⊥CD,利用向量垂直的充要条件,得到坐标关系,再结合椭圆方程,可解出
,从而得到直线AB的斜率,得到直线AB的方程.
试题解析:(Ⅰ)设AB的中点为M,切点为N,连OM,MN,则
|OM|+|MN|=|ON|=2,取A关于y轴的对称点A,
连AB,故|AB|+|AB|=2(|OM|+|MN|)=4.
所以点B的轨迹是以A,A为焦点,长轴长为4的椭圆.
其中,a=2,
,b=1,则
曲线Γ的方程为
. 5分
![]()
(Ⅱ)因为B为CD的中点,所以OB⊥CD,
则
.设B(x0,y0),
则
. 7分
又
解得
,
.
则kOB=
,kAB=
, 10分
则直线AB的方程为
,即
或
. 12分
![]()
科目:高中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系
中,平行于
轴且过点
的入射光线
被直线
反射,反射光线
交
轴于
点,圆
过点
,且与
、
相切.
![]()
(Ⅰ)求
所在直线的方程;
(Ⅱ)求圆
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某射击运动员进行射击训练,前三次射击在靶上的着弹点
刚好是边长为
的等边三角形的三个顶点.
![]()
(Ⅰ)第四次射击时,该运动员瞄准
区域射击(不会打到
外),则此次射击的着弹点距
的距离都超过
的概率为多少?(弹孔大小忽略不计)
(Ⅱ) 该运动员前三次射击的成绩(环数)都在区间
内,调整一下后,又连打三枪,其成绩(环数)都在区间
内.现从这
次射击成绩中随机抽取两次射击的成绩(记为
和
)进行技术分析.求事件“
”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产一种产品,根据经验,其次品率
与日产量
(万件)之间满足关系,
(其中
为常数,且
,已知每生产1万件合格的产品以盈利2万元,但每生产1万件次品将亏损1万元(注:次品率=次品数/生产量, 如
表示每生产10件产品,有1件次品,其余为合格品).
(1)试将生产这种产品每天的盈利额
(万元)表示为日产量
(万件)的函数;
(2)当日产量为多少时,可获得最大利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国城市空气污染指数范围及相应的空气质量类别见下表:
空气污染指数 | 空气质量 | 空气污染指数 | 空气质量 | |
0--50 | 优 | 201--250 | 中度污染 | |
51--100 | 良 | 251--300 | 中度重污染 | |
101--150 | 轻微污染 | >300 | 重污染 | |
151----200 | 轻度污染 |
我们把某天的空气污染指数在0-100时称作A类天,101--200时称作B类天,大于200时称作C类天.下图是某市2014年全年监测数据中随机抽取的18天数据作为样本,其茎叶图如下:(百位为茎,十.个位为叶)
![]()
(1)从这18天中任取3天,求至少含2个A类天的概率;
(2)从这18天中任取3天,记X是达到A类或B类天的天数,求X的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在D上的函数f(x),如果满足对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界,已知函数f(x)=1+x+ax2
(1)当a=﹣1时,求函数f(x)在(﹣∞,0)上的值域,判断函数f(x)在(﹣∞,0)上是否为有界函数,并说明理由;
(2)若函数f(x)在x∈[1,4]上是以3为上界的有界函数,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为提高员工的综合素质,聘请专业机构对员工进行专业技术培训,其中培训机构费用成本为12000元.公司每位员工的培训费用按以下方式与该机构结算:若公司参加培训的员工人数不超过30人时,每人的培训费用为850元;若公司参加培训的员工人数多于30人,则给予优惠:每多一人,培训费减少10元.已知该公司最多有60位员工可参加培训,设参加培训的员工人数为
人,每位员工的培训费为
元,培训机构的利润为
元.
(1)写出
与
之间的函数关系式;
(2)当公司参加培训的员工为多少人时,培训机构可获得最大利润?并求最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
,点
是椭圆
内且在
轴上的一个动点,过点
的直线与椭圆
交于
,
两点(
在第一象限),且
.
(Ⅰ)若点
为椭圆
的下顶点,求点
的坐标;
(Ⅱ)当
(
为坐标原点)的面积最大时,求点
的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com