(本题满分14分) 设{an}是由正数组成的等差数列,Sn是其前n项和
(1)若
,求
的值;
(2)若互不相等正整数p,q,m,使得p+q=2m,证明:不等式
成立;
(3)是否存在常数k和等差数列{an},使
恒成立(n∈N*),若存在,试求出常数k和数列{an}的通项公式;若不存在,请说明理由。
解:在等差数列{an}中,Sn,S2n-Sn,S3n-S2n,…成等差数列,
∴Sn+(S3n-S2n)=2(S2n-Sn)
∴S3n=3 S2n-3 Sn=60…………………………………………………………………4分
(2)SpSq=
pq(a1+ap)(a1+aq)
=
pq[a
+a1(ap+aq)+apaq]
=
pq(a
+2a1am+apaq)<
(
)2[a
+2a1am+(
)2]
=
m2(a
+2a1am+a
)=[
m(a1+am)]2
=S
………………………………………………………………………8分
(3)设an=pn+q(p,q为常数),则ka
-1=kp2n2+2kpqn+kq2-1
Sn+1=
p(n+1)2+
(n+1)
S2n=2pn2+(p+2q)n
∴S2n-Sn+1=
pn2+
n-(p+q),
依题意有kp2n2+2kpqn+kq2-1=
pn2+
n-(p+q)对一切正整数n成立,
∴![]()
由①得,p=0或kp=
;
若p=0代入②有q=0,而p=q=0不满足③,
∴p≠0
由kp=
代入②,
∴3q=
,q=-
代入③得,
-1=-(p-
),将kp=
代入得,∴P=
,
解得q=-
,k=![]()
故存在常数k=
及等差数列an=
n-
使其满足题意…………………13分
【解析】略
科目:高中数学 来源: 题型:
| π |
| 3 |
|
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,
为
上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;(2)求三棱锥D-AEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题
(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若A
B=[0,3],求实数m的值
(Ⅱ)若A
CRB,求实数m的取值范围
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题
(本题满分14分)
已知点
是⊙
:
上的任意一点,过
作
垂直
轴于
,动点
满足
。
(1)求动点
的轨迹方程;
(2)已知点
,在动点
的轨迹上是否存在两个不重合的两点
、
,使
(O是坐标原点),若存在,求出直线
的方程,若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题
(本题满分14分)已知函数
.
(1)求函数
的定义域;
(2)判断
的奇偶性;
(3)方程
是否有根?如果有根
,请求出一个长度为
的区间
,使![]()
![]()
;如果没有,请说明理由?(注:区间的长度为
).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com