【题目】已知
的三个顶点
,
,
,求:
(1)
边上的高
所在直线的方程;
(2)
的垂直平分线
所在直线的方程;
(3)
边的中线的方程.
【答案】(1)
;(2)
;(3)
.
【解析】试题分析:(1)由斜率公式易知kAC,由垂直关系可得直线BD的斜率kBD,代入点斜式易得;(2)同理可得kEF,再由中点坐标公式可得线段BC的中点,同样可得方程;
(3)由中点坐标公式可得AB中点,由两点可求斜率,进而可得方程.
试题解析:
(1)由斜率公式易知kAC=-2,∴直线BD的斜率
.
又BD直线过点B(-4,0),代入点斜式易得
直线BD的方程为:x-2y+4=0.
(2)∵
,∴
.又线段BC的中点为
,
∴EF所在直线的方程为y-2=-
(x+
).
整理得所求的直线方程为:6x+8y-1=0.
(3)∵AB的中点为M(0,-3),kCM=-7
∴直线CM的方程为y-(-3)=-7(x-0).
即7x+y+3=0,又因为中线的为线段,
故所求的直线方程为:7x+y+3=0(-1≤x≤0)
科目:高中数学 来源: 题型:
【题目】如图,小明想将短轴长为2,长轴长为4的一个半椭圆形纸片剪成等腰梯形ABDE,且梯形ABDE内接于半椭圆,DE∥AB,AB为短轴,OC为长半轴
(1)求梯形ABDE上底边DE与高OH长的关系式;
(2)若半椭圆上到H的距离最小的点恰好为C点,求底边DE的取值范围
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知与曲线
相切的直线
,与
轴,
轴交于
两点,
为原点,
,
,(
).
(1)求证::
与
相切的条件是:
.
(2)求线段
中点的轨迹方程;
(3)求三角形
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
(
),的两个焦点
,
,点
在此椭圆上.
(1)求椭圆
的方程;
(2)过点
的直线
与椭圆
相交于
两点,设点
,记直线
的斜率分别为
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的对称轴为坐标轴,离心率为
,且一个焦点坐标为
.
![]()
(1)求椭圆
的方程;
(2)设直线
与椭圆
相交于
两点,以线段
为邻边作平行四边形
,其中点
在椭圆
上,
为坐标原点,求点
到直线
的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,曲线
在点
处的切线与直线
垂直(其中
为自然对数的底数).
(I)求
的解析式及单调递减区间;
(II)是否存在常数
,使得对于定义域内的任意
恒成立?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com