精英家教网 > 高中数学 > 题目详情
(不等式选讲)不等式|
1
x
+1|+|
1
x
-2|>3
的解集是______.
原不等式可化为:
1
x
+1+
1
x
-2>3
1
x
>2
-
1
x
-1-
1
x
+2>3
1
x
≤1
1
x
+1-
1
x
+2>3
-1<
1
x
≤2

解得-1<x<0或0<x<
1
2
,所以不等式的解集为{x|-1<x<0或0<x<
1
2
}.
故答案为:{x|-1<x<0或0<x<
1
2
}.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(A)(不等式选讲)不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则实数a的取值范围是
 

(B) (几何证明选讲)如图,已知在△ABC中,∠C=90°,正方形DEFC內接于△ABC,DE∥AC,EF∥BC,AC=1,BC=2,则正方形DEFC的边长等于
 

(C) (极坐标系与参数方程)曲线ρ=2sinθ与ρ=2cosθ相交于A,B两点,则直线AB的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分,作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
设矩阵 M=
a0
0b
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩阵M的逆矩阵M-1
(Ⅱ)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C′:
x2
4
+y2=1
,求a,b的值.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
x=
3
cos∂
y=sin∂
(∂为参数)

(Ⅰ)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
π
2
),判断点P与直线l的位置关系;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
(3)(本小题满分7分)选修4-5:不等式选讲
设不等式|2x-1|<1的解集为M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,试比较ab+1与a+b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网选做题(请考生在以下三个小题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(选修4-4坐标系与参数方程)将参数方程
x=e2+e-2
y=2(e2-e-2)
(e为参数)化为普通方程是
 

B.(选修4-5 不等式选讲)不等式|x-1|+|2x+3|>5的解集是
 

C.(选修4-1 几何证明选讲)如图,在△ABC中,AD是高线,CE是中线,|DC|=|BE|,DG⊥CE于G,且|EC|=8,则|EG|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

 A.(不等式选讲) 不等式|x-1|+|x+3|>a,对一切实数x都成立,则实数a的取值范围为
(-∞,4)
(-∞,4)

B.(几何证明选讲)如图,P是圆O外一点,过P引圆O的两条割线PAB、PCD,PA=AB=
5
,CD=3,则PC=
2
2

C.(极坐标系与参数方程)极坐标方程ρsin2θ-2•cosθ=0表示的直角坐标方程是
y2=2x
y2=2x

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•福建)选修4-5:不等式选讲
设不等式|x-2|<a(a∈N*)的解集为A,且
3
2
∈A,
1
2
∉A

(Ⅰ)求a的值
(Ⅱ)求函数f(x)=|x+a|+|x-2|的最小值.

查看答案和解析>>

同步练习册答案