【题目】已知曲线
,为直线
上的动点,过
作
的两条切线,切点分别为
.
(1)证明:直线
过定点:
(2)若以
为圆心的圆与直线
相切,且切点为线段
的中点,求该圆的方程.
【答案】(1)见详解;(2)
或
.
【解析】
(1)可设
,
,
然后求出A,B两点处的切线方程,比如
:
,又因为
也有类似的形式,从而求出带参数直线
方程,最后求出它所过的定点.
(2)由(1)得带参数的直线
方程和抛物线方程联立,再通过
为线段
的中点,
得出
的值,从而求出
坐标和
的值,最后求出圆的方程.
(1)证明:设
,
,则
。又因为
,所以
.则切线DA的斜率为
,故
,整理得
.设
,同理得
.
,
都满足直线方程
.于是直线
过点
,而两个不同的点确定一条直线,所以直线
方程为
.即
,当
时等式恒成立。所以直线
恒过定点
.
(2)由(1)得直线
方程为
,和抛物线方程联立得:
化简得
.于是
,
设
为线段
的中点,则![]()
由于
,而
,
与向量
平行,所以
,
解得
或
.
当
时,
,
所求圆的方程为
;
当
时,
或
,
所求圆的方程为
.
所以圆的方程为
或
.
科目:高中数学 来源: 题型:
【题目】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有
人,现采用分层抽样的方法,从该单位上述员工中抽取
人调查专项附加扣除的享受情况.
(Ⅰ)应从老、中、青员工中分别抽取多少人?
(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为
.享受情况如右表,其中“
”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.
员工 项目 | A | B | C | D | E | F |
子女教育 | ○ | ○ | × | ○ | × | ○ |
继续教育 | × | × | ○ | × | ○ | ○ |
大病医疗 | × | × | × | ○ | × | × |
住房贷款利息 | ○ | ○ | × | × | ○ | ○ |
住房租金 | × | × | ○ | × | × | × |
赡养老人 | ○ | ○ | × | × | × | ○ |
(i)试用所给字母列举出所有可能的抽取结果;
(ii)设
为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件
发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
的离心率是
,一个顶点是
.
![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
,
是椭圆
上异于点
的任意两点,且
.试问:直线
是否恒过一定点?若是,求出该定点的坐标;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点P到两点(0,
),(0,
),的距离之和等于4,设点P的轨迹为C.
(1)求C的方程.
(2)设直线
与C交于A,B两点,求弦长|AB|,并判断OA与OB是否垂直,若垂直,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知点
为抛物线
,点
为焦点,过点
的直线交抛物线于
两点,点
在抛物线上,使得
的重心
在
轴上,直线
交
轴于点
,且
在点
右侧.记
的面积为
.
![]()
(1)求
的值及抛物线的标准方程;
(2)求
的最小值及此时点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:x2=2py经过点(2,1).
(Ⅰ)求抛物线C的方程及其准线方程;
(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥PABCD中,AD∥BC,平面PAC⊥平面ABCD,AB=AD=DC=1,
∠ABC=∠DCB=60,E是PC上一点.
(Ⅰ)证明:平面EAB⊥平面PAC;
(Ⅱ)若△PAC是正三角形,且E是PC中点,求三棱锥AEBC的体积.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com