【题目】如图,已知点
为抛物线
,点
为焦点,过点
的直线交抛物线于
两点,点
在抛物线上,使得
的重心
在
轴上,直线
交
轴于点
,且
在点
右侧.记
的面积为
.
![]()
(1)求
的值及抛物线的标准方程;
(2)求
的最小值及此时点
的坐标.
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
,圆
:
的圆心
在椭圆上,点
到椭圆
的右焦点的距离为
.
(1)求椭圆
的标准方程;
(2)过点
作互相垂直的两条直线
,且
交椭圆
于
两点,直线
交圆
于
,
两点,且
为
的中点,求
面积的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
,为直线
上的动点,过
作
的两条切线,切点分别为
.
(1)证明:直线
过定点:
(2)若以
为圆心的圆与直线
相切,且切点为线段
的中点,求该圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.
①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;
②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过点A(0,1)且斜率为k的直线l与圆C:x2+y2﹣4x﹣6y+12=0相交于M、N两点
(1)求实数k的取值范围;
(2)求证:
为定值;
(3)若O为坐标原点,问是否存在直线l,使得
,若存在,求直线l的方程,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA.规划要求:线段PB、QA上的所有点到点O的距离均不小于圆O的半径.已知点A、B到直线l的距离分别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).
![]()
(1)若道路PB与桥AB垂直,求道路PB的长;
(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;
(3)对规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一台机器生产某种产品,如果生产出一件甲等品可获利50元,生产出一件乙等品可获利30元,生产出一件次品,要赔20元,已知这台机器生产出甲等品、乙等品和次品的概率分别为0.6,0.3,和0.1,则这台机器每生产一件产品平均预期可获利________元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com